Minimum rank and critical ideals of graphs Banco de México

Carlos A. Alfaro

Minimum rank

Definition

The minimum rank $mr_{\mathcal{R}}(G)$ of G is the smallest possible rank among all the $n \times n$ symmetric matrices with entries in the field \mathcal{R} , whose u, v-entry $(u \neq v)$ is nonzero whenever u is adjacent to v and zero otherwise.

Minimum rank

Definition

The minimum rank $mr_{\mathcal{R}}(G)$ of G is the smallest possible rank among all the $n \times n$ symmetric matrices with entries in the field \mathcal{R} , whose u, v-entry $(u \neq v)$ is nonzero whenever u is adjacent to v and zero otherwise.

Observation

- Graphs are simple and have no loops,
- We might focus when \mathcal{R} is either \mathbb{R} or \mathbb{C} .

Zero-forcing number

Definition

The zero forcing game is a color-change game where vertices can be blue or white. At the beginning, a set of vertices B are colored blue while others remain white. The goal is to color all vertices blue through repeated applications of the color change rule: If u is a blue vertex and v is the only white neighbor of u, then v is forced to become blue. An initial set of blue vertices B is called a zero forcing set if starting with B one can make all vertices blue.

Zero-forcing number

Definition

The zero forcing game is a color-change game where vertices can be blue or white. At the beginning, a set of vertices B are colored blue while others remain white. The goal is to color all vertices blue through repeated applications of the color change rule: If u is a blue vertex and v is the only white neighbor of u, then v is forced to become blue. An initial set of blue vertices B is called a zero forcing set if starting with B one can make all vertices blue.

Definition

The zero forcing number Z(G) is the minimum cardinality of a zero forcing set.

Minimum rank & zero-forcing

Definition mz(G) = |V(G)| - Z(G).

Carlos A. Alfaro (Banxico)

Minimum rank & zero-forcing

Minimum rank & zero-forcing

Definition mz(G) = |V(G)| - Z(G).

Theorem (AIM Minimum Rank Work Group, 2008)

For every graph G, $mz(G) \leq mr_{\mathcal{R}}(G)$ for any field \mathcal{R} .

The generalized Laplacian matrix

Let G be a graph with n vertices and $X_G = \{x_u : u \in V(G)\}$ a set of variables.

Definition

The generalized Laplacian matrix $A_X(G)$ of G is the matrix diag $(X_G) - A(G)$.

The generalized Laplacian matrix

Let G be a graph with n vertices and $X_G = \{x_u : u \in V(G)\}$ a set of variables.

Definition

The generalized Laplacian matrix $A_X(G)$ of G is the matrix diag $(X_G) - A(G)$.

Critical ideals of graphs

Let $\mathcal{R}[X_G]$ denote the polynomial ring over a commutative ring \mathcal{R} in the variables X_G .

Definition

For $1 \le k \le n$, the k-th critical ideal $I_k^{\mathcal{R}}(G, X_G)$ is the ideal $\langle \min s_k(A_X(G)) \rangle$.

An ideal is said to be trivial if it is equal to $\langle 1 \rangle$ (= $\mathcal{R}[X_G]$).

Definition

The algebraic co-rank $\gamma_{\mathcal{R}}(G)$ of G is the maximum integer k for which $I_k^{\mathcal{R}}(G, X_G)$ is trivial.

Critical ideals of graphs

For our graph, $\gamma_{\mathbb{R}}(G) = \gamma_{\mathbb{Z}}(G) = 3$. And for the first non trivial $I_4^{\mathbb{R}}(G, X_G) = I_4^{\mathbb{Z}}(G, X_G)$, we give the Gröbner basis:

$$\langle x_0 + x_5 - 1, x_1 + x_5 - 1, x_2 - x_5, x_3 - x_5, x_4 + x_5 - 1, x_5^2 - x_5 - 1 \rangle$$
.

Critical ideals of graphs

$$\begin{bmatrix} x_0 & -1 & -1 & 0 & -1 & 0 \\ -1 & x_1 & 0 & -1 & -1 & 0 \\ -1 & 0 & x_2 & -1 & 0 & -1 \\ 0 & -1 & -1 & x_3 & 0 & -1 \\ -1 & 0 & 0 & 0 & x_4 & -1 \\ 0 & 0 & -1 & -1 & -1 & x_5 \end{bmatrix}$$

For our graph, $\gamma_{\mathbb{R}}(G) = \gamma_{\mathbb{Z}}(G) = 3$. And for the first non trivial $I_4^{\mathbb{R}}(G, X_G) = I_4^{\mathbb{Z}}(G, X_G)$, we give the Gröbner basis:

$$\langle x_0 + x_5 - 1, x_1 + x_5 - 1, x_2 - x_5, x_3 - x_5, x_4 + x_5 - 1, x_5^2 - x_5 - 1 \rangle$$
.

Note $I_n^{\mathcal{R}}(G, X_G) = \langle \det(A_X(G)) \rangle$.

Definition

The variety V(I) of an ideal I is the set of common roots between polynomials in I.

Definition

The variety V(I) of an ideal I is the set of common roots between polynomials in I.

Example

The ideal
$$I_4^{\mathbb{R}}(G, X_G)$$
 for G of our previous example:
 $\langle x_0 + x_5 - 1, x_1 + x_5 - 1, x_2 - x_5, x_3 - x_5, x_4 + x_5 - 1, x_5^2 - x_5 - 1 \rangle$, there are only two roots in its variety:
 $\left(\frac{1-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$
and
 $\left(\frac{1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right)$.

BANCO™MÉXICO

Example

For the complete graph K_3 with 3 vertices, $\gamma_{\mathbb{R}}(K_3) = 1$, $I_2^{\mathbb{R}}(K_3, X_{K_3}) = \langle x_0 + 1, x_1 + 1, x_2 + 1 \rangle$, and $I_3^{\mathbb{R}}(K_3, X_{K_3}) = \langle x_0 x_1 x_2 - x_0 - x_1 - x_2 - 2 \rangle$. The variety $V(I_2^{\mathbb{R}}(K_3, X_{K_3})) = \{(1, 1, 1)\}$, and the variety $V(I_3^{\mathbb{R}}(K_3, X_{K_3}))$ is

Figure: Partial view of the variety of $I_3^{\mathbb{R}}(K_3, X_{K_3})$ in \mathbb{R}^3 .

We have that

$$\langle 1 \rangle \supseteq I_1^{\mathcal{R}}(G, X_G) \supseteq \cdots \supseteq I_n^{\mathcal{R}}(G, X_G) \supseteq \langle 0 \rangle.$$

Carlos A. Alfaro (Banxico)

We have that

$$\langle 1 \rangle \supseteq I_1^{\mathcal{R}}(G, X_G) \supseteq \cdots \supseteq I_n^{\mathcal{R}}(G, X_G) \supseteq \langle 0 \rangle.$$

Then,

$$V(\langle 1 \rangle) \subseteq V(I_1^{\mathcal{R}}(G, X_G)) \subseteq \cdots \subseteq V(I_n^{\mathcal{R}}(G, X_G)) \subseteq V(\langle 0 \rangle).$$

Carlos A. Alfaro (Banxico)

Observation (Alfaro & Lin, 2019)

If $V(I_k^{\mathcal{R}}(G, X_G)) \neq \emptyset$ for some k, then there exists $\mathbf{a} \in \mathcal{R}$ such that, for all $t \geq k$, $I_t^{\mathcal{R}}(G, \mathbf{a}) = \langle 0 \rangle$; that is, all t-minors of $A_X(G)|_{X_G = \mathbf{a}}$ are equal to 0. Therefore, $\operatorname{mr}_{\mathcal{R}}(G) \leq k - 1$.

Observation (Alfaro & Lin, 2019)

If $V(I_k^{\mathcal{R}}(G, X_G)) \neq \emptyset$ for some k, then there exists $\mathbf{a} \in \mathcal{R}$ such that, for all $t \geq k$, $I_t^{\mathcal{R}}(G, \mathbf{a}) = \langle 0 \rangle$; that is, all t-minors of $A_X(G)|_{X_G = \mathbf{a}}$ are equal to 0. Therefore, $\operatorname{mr}_{\mathcal{R}}(G) \leq k - 1$.

Observation (Alfaro & Lin, 2019)

If $V(I_k^{\mathcal{R}}(G, X_G)) \neq \emptyset$ for some k, then there exists $\mathbf{a} \in \mathcal{R}$ such that, for all $t \geq k$, $I_t^{\mathcal{R}}(G, \mathbf{a}) = \langle 0 \rangle$; that is, all t-minors of $A_X(G)|_{X_G = \mathbf{a}}$ are equal to 0. Therefore, $\operatorname{mr}_{\mathcal{R}}(G) \leq k - 1$.

Example

Since $V(I_A^{\mathbb{R}}(G, X_G))$ is not empty, then $\operatorname{mr}_{\mathbb{R}}(G) < 3$. Therefore, $mz(G) = mr_{\mathbb{R}}(G) =$ $\gamma_{\mathbb{R}}(G) = 3.$

Lemma (The Weak Nullstellensatz)

Let \mathcal{R} be an algebraically closed field and let $I \subseteq \mathcal{R}[X]$ be an ideal satisfying $V(I) = \emptyset$. Then I is trivial.

Theorem (Alfaro & Lin, 2019)

If \mathcal{R} is an algebraically closed field, then $mr_{\mathcal{R}}(G) \leq \gamma_{\mathcal{R}}(G)$.

Lemma (The Weak Nullstellensatz)

Let \mathcal{R} be an algebraically closed field and let $I \subseteq \mathcal{R}[X]$ be an ideal satisfying $V(I) = \emptyset$. Then I is trivial.

Theorem (Alfaro & Lin, 2019)

If \mathcal{R} is an algebraically closed field, then $mr_{\mathcal{R}}(G) \leq \gamma_{\mathcal{R}}(G)$.

Theorem (Alfaro & Lin, 2019)

For every graph G, $mz(G) \leq \gamma_{\mathcal{R}}(G)$ for any commutative ring \mathcal{R} .

Conjecture

 $\operatorname{mr}_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G).$

Carlos A. Alfaro (Banxico)

Conjecture

 $\operatorname{mr}_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G).$

Theorem (Alfaro & Lin, 2019)

If G is a connected graph with $mr_{\mathbb{R}}(G) \leq 2$, then $mr_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G)$.

Conjecture

 $\operatorname{mr}_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G).$

Theorem (Alfaro & Lin, 2019)

If G is a connected graph with $mr_{\mathbb{R}}(G) \leq 2$, then $mr_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G)$.

Theorem (Alfaro, 2018)

If G is a connected graph with $mr_{\mathbb{R}}(G) \leq 3$, then $mr_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G)$.

Computational results

From the 143 connected graphs with at most 6 vertices, only 21 graphs have $mz(G) < \gamma_{\mathbb{R}}(G)$. For the other graphs, $mz(G) = mr(G) = \gamma_{\mathbb{R}}(G)$.

M

Theorem (Alfaro & Lin, 2019)

For any tree T,
$$mz(T) = mr(T) = \gamma_{\mathbb{R}}(T)$$
.

Carlos A. Alfaro (Banxico)

Theorem (Alfaro & Lin, 2019)

For any tree T,
$$mz(T) = mr(T) = \gamma_{\mathbb{R}}(T)$$
.

Theorem (Alfaro & Lin, 2019)

For any cycle C_n with $n \ge 3$, $mz(C_n) = mr(C_n) = \gamma_{\mathbb{R}}(C_n)$.

Theorem (Alfaro & Lin, 2019)

For any tree T,
$$mz(T) = mr(T) = \gamma_{\mathbb{R}}(T)$$
.

Theorem (Alfaro & Lin, 2019)

For any cycle C_n with $n \ge 3$, $mz(C_n) = mr(C_n) = \gamma_{\mathbb{R}}(C_n)$.

Theorem (Alfaro & Lin, 2019)

Let G be the line graph of a tree. Then $mz(G) = mr(G) = \gamma_{\mathbb{R}}(G)$.

Theorem (Alfaro, Valencia & Vazquez, 2018)

Let D be a connected digraph. Then, $\gamma_{\mathbb{Z}}(D) \leq 1$ if and only if D is isomorphic to Λ_{n_1,n_2,n_3} .

Theorem (Alfaro & Lin, 2019)

Let \mathcal{R} be a commutative ring with unity. The following are equivalent:

- **1** *D* is isomorphic to Λ_{n_1,n_2,n_3} ,
- 2 mr_{\mathcal{R}} $(D) \leq 1$,
- $(\mathbf{S} \ \mathsf{mz}(D) \leq 1,$

Main references

- AIM Minimum Rank Special Graphs Work Group. Zero forcing sets and the minimum rank of graphs. Linear Algebra Appl. 428 (2008) 1628–1648.
- C.A. Alfaro, Graphs with real algebraic co-rank at most two. Linear Algebra Appl. 556 (2018) 100–107.
- C.A. Alfaro & J.C.-H. Lin, Critical ideals, minimum rank and zero forcing number. Appl. Math. Comput. 358 (2019) 305–313.
- C.A. Alfaro, C.E. Valencia & A. Vázquez-Ávila, Digraphs with at most one trivial critical ideal. Linear & Multilinear Algebra 66 (2018) 2036–204.

Thank you!

Carlos A. Alfaro carlos.alfaro@banxico.org.mx

BANCODEMEXICO