Minimum rank and critical ideals of graphs Banco de México

Carlos A. Alfaro

Minimum rank

Definition

The minimum rank $m r_{\mathcal{R}}(G)$ of G is the smallest possible rank among all the $n \times n$ symmetric matrices with entries in the field \mathcal{R}, whose u, v-entry $(u \neq v)$ is nonzero whenever u is adjacent to v and zero otherwise.

Minimum rank

Definition

The minimum rank $m r_{\mathcal{R}}(G)$ of G is the smallest possible rank among all the $n \times n$ symmetric matrices with entries in the field \mathcal{R}, whose u, v-entry $(u \neq v)$ is nonzero whenever u is adjacent to v and zero otherwise.

Observation

- Graphs are simple and have no loops,
- We might focus when \mathcal{R} is either \mathbb{R} or \mathbb{C}.
-

Zero-forcing number

Definition

The zero forcing game is a color-change game where vertices can be blue or white. At the beginning, a set of vertices B are colored blue while others remain white. The goal is to color all vertices blue through repeated applications of the color change rule: If u is a blue vertex and v is the only white neighbor of u, then v is forced to become blue. An initial set of blue vertices B is called a zero forcing set if starting with B one can make all vertices blue.

Zero-forcing number

Definition

The zero forcing game is a color-change game where vertices can be blue or white. At the beginning, a set of vertices B are colored blue while others remain white. The goal is to color all vertices blue through repeated applications of the color change rule: If u is a blue vertex and v is the only white neighbor of u, then v is forced to become blue. An initial set of blue vertices B is called a zero forcing set if starting with B one can make all vertices blue.

Definition

The zero forcing number $Z(G)$ is the minimum cardinality of a zero forcing set.

Minimum rank \& zero-forcing

Definition
 $m z(G)=|V(G)|-Z(G)$.

Minimum rank \& zero-forcing

Definition
$m z(G)=|V(G)|-Z(G)$.

Example

Since there is no zero forcing set of size 2 , then $m z(G)=Z(G)=3$.

Minimum rank \& zero-forcing

Definition
$m z(G)=|V(G)|-Z(G)$.
Example

Since there is no zero forcing set of size 2 , then $\mathrm{mz}(G)=Z(G)=3$.

Theorem (AIM Minimum Rank Work Group, 2008)

For every graph $G, \mathrm{mz}(G) \leq \mathrm{mr}_{\mathcal{R}}(G)$ for any field \mathcal{R}.

The generalized Laplacian matrix

Let G be a graph with n vertices and $X_{G}=\left\{x_{u}: u \in V(G)\right\}$ a set of variables.

Definition

The generalized Laplacian matrix $A_{X}(G)$ of G is the matrix $\operatorname{diag}\left(X_{G}\right)-A(G)$.

The generalized Laplacian matrix

Let G be a graph with n vertices and $X_{G}=\left\{x_{u}: u \in V(G)\right\}$ a set of variables.

Definition

The generalized Laplacian matrix $A_{X}(G)$ of G is the matrix $\operatorname{diag}\left(X_{G}\right)-A(G)$.

Example

G

$$
\left[\begin{array}{cccccc}
x_{0} & -1 & -1 & 0 & -1 & 0 \\
-1 & x_{1} & 0 & -1 & -1 & 0 \\
-1 & 0 & x_{2} & -1 & 0 & -1 \\
0 & -1 & -1 & x_{3} & 0 & -1 \\
-1 & 0 & 0 & 0 & x_{4} & -1 \\
0 & 0 & -1 & -1 & -1 & x_{5}
\end{array}\right]
$$

Critical ideals of graphs

Let $\mathcal{R}\left[X_{G}\right]$ denote the polynomial ring over a commutative ring \mathcal{R} in the variables X_{G}.

Definition

For $1 \leq k \leq n$, the k-th critical ideal $I_{k}^{\mathcal{R}}\left(G, X_{G}\right)$ is the ideal $\left\langle\operatorname{minors}_{k}\left(A_{X}(G)\right)\right\rangle$.

An ideal is said to be trivial if it is equal to $\langle 1\rangle\left(=\mathcal{R}\left[X_{G}\right]\right)$.

Definition

The algebraic co-rank $\gamma_{\mathcal{R}}(G)$ of G is the maximum integer k for which $I_{k}^{\mathcal{R}}\left(G, X_{G}\right)$ is trivial.

Critical ideals of graphs

Example

G
For our graph, $\gamma_{\mathbb{R}}(G)=\gamma_{\mathbb{Z}}(G)=3$.
And for the first non trivial $I_{4}^{\mathbb{R}}\left(G, X_{G}\right)=I_{4}^{\mathbb{Z}}\left(G, X_{G}\right)$, we give the Gröbner basis:

$$
\left\langle x_{0}+x_{5}-1, x_{1}+x_{5}-1, x_{2}-x_{5}, x_{3}-x_{5}, x_{4}+x_{5}-1, x_{5}^{2}-x_{5}-1\right\rangle .
$$

Critical ideals of graphs

Example

G
For our graph, $\gamma_{\mathbb{R}}(G)=\gamma_{\mathbb{Z}}(G)=3$.
And for the first non trivial $I_{4}^{\mathbb{R}}\left(G, X_{G}\right)=I_{4}^{\mathbb{Z}}\left(G, X_{G}\right)$, we give the Gröbner basis:

$$
\left\langle x_{0}+x_{5}-1, x_{1}+x_{5}-1, x_{2}-x_{5}, x_{3}-x_{5}, x_{4}+x_{5}-1, x_{5}^{2}-x_{5}-1\right\rangle .
$$

Note $I_{n}^{\mathcal{R}}\left(G, X_{G}\right)=\left\langle\operatorname{det}\left(A_{X}(G)\right)\right\rangle$.

Varieties of critical ideals of graphs

Definition

The variety $V(I)$ of an ideal I is the set of common roots between polynomials in I.

Wi BANCOrMÉXICO

Varieties of critical ideals of graphs

Definition

The variety $V(I)$ of an ideal I is the set of common roots between polynomials in I.

Example

The ideal $\mathbb{I}_{4}^{\mathbb{R}}\left(G, X_{G}\right)$ for G of our previous example:
$\left\langle x_{0}+x_{5}-1, x_{1}+x_{5}-1, x_{2}-x_{5}, x_{3}-x_{5}, x_{4}+x_{5}-1, x_{5}^{2}-x_{5}-1\right\rangle$, there are only two roots in its variety:
$\left(\frac{1-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$
and
$\left(\frac{1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right)$.

Varieties of critical ideals of graphs

Example

For the complete graph K_{3} with 3 vertices, $\gamma_{\mathbb{R}}\left(K_{3}\right)=1$,
$\stackrel{1}{2}_{2}^{\mathbb{R}}\left(K_{3}, X_{K_{3}}\right)=\left\langle x_{0}+1, x_{1}+1, x_{2}+1\right\rangle$, and
$I_{3}^{\mathbb{R}}\left(K_{3}, X_{K_{3}}\right)=\left\langle x_{0} x_{1} x_{2}-x_{0}-x_{1}-x_{2}-2\right\rangle$. The variety $V\left(\mathbb{R}_{2}^{\mathbb{R}}\left(K_{3}, X_{K_{3}}\right)\right)=\{(1,1,1)\}$, and the variety $V\left(I_{3}^{\mathbb{R}}\left(K_{3}, X_{K_{3}}\right)\right)$ is

Figure: Partial view of the variety of $\mathbb{I}_{3}^{\mathbb{R}}\left(K_{3}, X_{K_{3}}\right)$ in \mathbb{R}^{3}.

Varieties of critical ideals of graphs

We have that

$$
\langle 1\rangle \supseteq I_{1}^{\mathcal{R}}\left(G, X_{G}\right) \supseteq \cdots \supseteq I_{n}^{\mathcal{R}}\left(G, X_{G}\right) \supseteq\langle 0\rangle .
$$

Varieties of critical ideals of graphs

We have that

$$
\langle 1\rangle \supseteq I_{1}^{\mathcal{R}}\left(G, X_{G}\right) \supseteq \cdots \supseteq I_{n}^{\mathcal{R}}\left(G, X_{G}\right) \supseteq\langle 0\rangle .
$$

Then,

$$
V(\langle 1\rangle) \subseteq V\left(I_{1}^{\mathcal{R}}\left(G, X_{G}\right)\right) \subseteq \cdots \subseteq V\left(I_{n}^{\mathcal{R}}\left(G, X_{G}\right)\right) \subseteq V(\langle 0\rangle)
$$

Minimum rank \& critical ideals

Observation (Alfaro \& Lin, 2019)

If $V\left(I_{k}^{\mathcal{R}}\left(G, X_{G}\right)\right) \neq \emptyset$ for some k, then there exists $\mathbf{a} \in \mathcal{R}$ such that, for all $t \geq k, I_{t}^{\mathcal{R}}(G, \mathbf{a})=\langle 0\rangle$; that is, all t-minors of $\left.A_{X}(G)\right|_{X_{G}=\mathbf{a}}$ are equal to 0 . Therefore, $\operatorname{mr}_{\mathcal{R}}(G) \leq k-1$.

Minimum rank \& critical ideals

Observation (Alfaro \& Lin, 2019)

If $V\left(I_{k}^{\mathcal{R}}\left(G, X_{G}\right)\right) \neq \emptyset$ for some k, then there exists $\mathbf{a} \in \mathcal{R}$ such that, for all $t \geq k, I_{t}^{\mathcal{R}}(G, \mathbf{a})=\langle 0\rangle$; that is, all t-minors of $\left.A_{X}(G)\right|_{X_{G}=\mathbf{a}}$ are equal to 0 . Therefore, $\operatorname{mr}_{\mathcal{R}}(G) \leq k-1$.

Example

G

Since $V\left(\mathbb{I}_{4}^{\mathbb{R}}\left(G, X_{G}\right)\right)$ is not empty, then $\operatorname{mr}_{\mathbb{R}}(G) \leq 3$.

Wancoreméxico

Minimum rank \& critical ideals

Observation (Alfaro \& Lin,2019)

If $V\left(I_{k}^{\mathcal{R}}\left(G, X_{G}\right)\right) \neq \emptyset$ for some k, then there exists $\mathbf{a} \in \mathcal{R}$ such that, for all $t \geq k, I_{t}^{\mathcal{R}}(G, \mathbf{a})=\langle 0\rangle$; that is, all t-minors of $\left.A_{X}(G)\right|_{x_{G}=\mathbf{a}}$ are equal to 0 . Therefore, $\operatorname{mr}_{\mathcal{R}}(G) \leq k-1$.

Example

G

Since $V\left(\mathbb{I}_{4}^{\mathbb{R}}\left(G, X_{G}\right)\right)$ is not empty, then $\mathrm{mr}_{\mathbb{R}}(G) \leq 3$.
Therefore, $\mathrm{mz}(G)=\mathrm{mr}_{\mathbb{R}}(G)=$ $\gamma_{\mathbb{R}}(G)=3$.

Minimum rank \& critical ideals

Lemma (The Weak Nullstellensatz)
Let \mathcal{R} be an algebraically closed field and let $I \subseteq \mathcal{R}[X]$ be an ideal satisfying $V(I)=\emptyset$. Then I is trivial.

Theorem (Alfaro \& Lin, 2019)
If \mathcal{R} is an algebraically closed field, then $\operatorname{mr}_{\mathcal{R}}(G) \leq \gamma_{\mathcal{R}}(G)$.

Minimum rank \& critical ideals

Lemma (The Weak Nullstellensatz)
Let \mathcal{R} be an algebraically closed field and let $I \subseteq \mathcal{R}[X]$ be an ideal satisfying $V(I)=\emptyset$. Then I is trivial.

Theorem (Alfaro \& Lin, 2019)
If \mathcal{R} is an algebraically closed field, then $\operatorname{mr}_{\mathcal{R}}(G) \leq \gamma_{\mathcal{R}}(G)$.
Theorem (Alfaro \& Lin, 2019)
For every graph $G, \mathrm{mz}(G) \leq \gamma_{\mathcal{R}}(G)$ for any commutative ring \mathcal{R}.

Minimum rank \& critical ideals

Conjecture

$$
\operatorname{mr}_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G) .
$$

良, mancomitico

Minimum rank \& critical ideals

Conjecture $m r_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G)$.

Theorem (Alfaro \& Lin, 2019) If G is a connected graph with $\operatorname{mr}_{\mathbb{R}}(G) \leq 2$, then $\operatorname{mr}_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G)$.

隹, ancomitico

Minimum rank \& critical ideals

Conjecture

$$
m r_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G) .
$$

Theorem (Alfaro \& Lin, 2019)
If G is a connected graph with $\operatorname{mr}_{\mathbb{R}}(G) \leq 2$, then $\operatorname{mr}_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G)$.
Theorem (Alfaro, 2018)
If G is a connected graph with $\operatorname{mr}_{\mathbb{R}}(G) \leq 3$, then $\operatorname{mr}_{\mathbb{R}}(G) \leq \gamma_{\mathbb{R}}(G)$.

Computational results

From the 143 connected graphs with at most 6 vertices, only 21 graphs have $\mathrm{mz}(G)<\gamma_{\mathbb{R}}(G)$. For the other graphs, $\mathrm{mz}(G)=\operatorname{mr}(G)=\gamma_{\mathbb{R}}(G)$.

2
3

3
4

3
4

3
4

3

3

2
3

2

3

3

2

3

3

2
3

A mearmbeo

Graphs with equal mz, mr and γ

Theorem (Alfaro \& Lin, 2019)

For any tree $T, m z(T)=m r(T)=\gamma_{\mathbb{R}}(T)$.

良, mancomitico

Graphs with equal mz, mr and γ

Theorem (Alfaro \& Lin, 2019)
For any tree $T, \mathrm{mz}(T)=\mathrm{mr}(T)=\gamma_{\mathbb{R}}(T)$.
Theorem (Alfaro \& Lin, 2019)
For any cycle C_{n} with $n \geq 3, \operatorname{mz}\left(C_{n}\right)=\operatorname{mr}\left(C_{n}\right)=\gamma_{\mathbb{R}}\left(C_{n}\right)$.

险, ancomentice

Graphs with equal mz, mr and γ

Theorem (Alfaro \& Lin, 2019)
For any tree $T, \mathrm{mz}(T)=\mathrm{mr}(T)=\gamma_{\mathbb{R}}(T)$.
Theorem (Alfaro \& Lin, 2019)
For any cycle C_{n} with $n \geq 3, \operatorname{mz}\left(C_{n}\right)=\operatorname{mr}\left(C_{n}\right)=\gamma_{\mathbb{R}}\left(C_{n}\right)$.
Theorem (Alfaro \& Lin, 2019)
Let G be the line graph of a tree. Then $\operatorname{mz}(G)=\operatorname{mr}(G)=\gamma_{\mathbb{R}}(G)$.

领, mancomexteo

Graphs with equal mz, mr and γ

Theorem (Alfaro, Valencia \& Vazquez, 2018)
Let D be a connected digraph. Then, $\gamma_{\mathbb{Z}}(D) \leq 1$ if and only if D is isomorphic to $\Lambda_{n_{1}, n_{2}, n_{3}}$.

Wi BANCOrMÉXICO

Graphs with equal mz, mr and γ

Theorem (Alfaro \& Lin, 2019)

Let \mathcal{R} be a commutative ring with unity. The following are equivalent:
(1) D is isomorphic to $\Lambda_{n_{1}, n_{2}, n_{3}}$,
(2) $\operatorname{mr}_{\mathcal{R}}(D) \leq 1$,
(3) $m z(D) \leq 1$,
(4) $\gamma_{\mathcal{R}}(D) \leq 1$.

Main references

- AIM Minimum Rank - Special Graphs Work Group. Zero forcing sets and the minimum rank of graphs. Linear Algebra Appl. 428 (2008) 1628-1648.
- C.A. Alfaro, Graphs with real algebraic co-rank at most two. Linear Algebra Appl. 556 (2018) 100-107.
- C.A. Alfaro \& J.C.-H. Lin, Critical ideals, minimum rank and zero forcing number. Appl. Math. Comput. 358 (2019) 305-313.
- C.A. Alfaro, C.E. Valencia \& A. Vázquez-Ávila, Digraphs with at most one trivial critical ideal. Linear \& Multilinear Algebra 66 (2018) 2036-204.

Thank you!

Carlos A. Alfaro carlos.alfaro@banxico.org.mx

