The degree-distance and transmission-adjacency matrices 25th Conference of the ILAS 2023

Carlos A. Alfaro (BANXICO) joint work with Octavio Zapata (UNAM)

- To understand to what extent graphs are characterized by their spectra.
- motivated by the graph isomorphism problem

Cospectral graphs

M-cospectral graphs are graphs that share *M*-spectrum. Where *M* might be *A*, *L*, *Q*, *D*, D^L and D^Q .

Let \mathcal{G}_n be the set of **connected** graphs with *n* vertices, and $\mathcal{G}_n^{sp}(M)$ be the set of graphs in \mathcal{G}_n with a *M*-cospectral mate.

п	4	5	6	7	8	9	10
$ \mathcal{G}_n $	6	21	112	853	11,117	261,080	11,716,571
$ \mathcal{G}_n^{sp}(A) $	0	0	2	63	1,353	46,930	2,462,141
$ \mathcal{G}_n^{sp}(L) $	0	0	4	115	1,611	40,560	1,367,215
$ \mathcal{G}_n^{sp}(Q) $	0	2	10	80	1,047	17,627	615,919
$ \mathcal{G}_n^{sp}(D) $	0	0	0	22	658	25,058	1,389,986
$ \mathcal{G}_n^{sp}(D^L) $	0	0	0	43	745	20,455	787,851
$ \mathcal{G}_n^{sp}(D^Q) $	0	2	6	38	453	8,168	319,324

Table: Number of connected graphs with an *M*-cospectral mate.

Coinvariant graphs

- Two matrices M, N are equivalent if there exist unimodular matrices P and Q with entries in Z satisfying M = PNQ.
- The Smith normal form of a integer matrix M, denoted by SNF(M), is the unique diagonal matrix diag(f₁,..., f_r, 0,..., 0) equivalent to M such that r = rank(M) and f_i|f_i for i < j.
- The *invariant factors* (or *elementary divisors*) of *M* are the integers in the diagonal of the SNF(*M*).

Example

$$L(\mathcal{K}_4) = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}$$

 $SNF(L(K_4)) = diag(1, 4, 4, 0)$

Coinvariant graphs

Two graphs G and H are *M*-coinvariant if the SNFs of M(G) and M(H), computed over \mathbb{Z} , are the same.

 $\mathcal{G}_n^{in}(M)$ is the set of graphs in \mathcal{G}_n with a *M*-coinvariant mate.

п	4	5	6	7	8	9	10
$ \mathcal{G}_n $	6	21	112	853	11,117	261,080	11,716,571
$ \mathcal{G}_n^{in}(A) $	4	20	112	853	11,117	261,080	11,716,571
$ \mathcal{G}_n^{in}(L) $	2	8	57	526	8,027	221,834	11,036,261
$ \mathcal{G}_n^{in}(Q) $	2	11	78	620	7,962	201,282	10,086,812
$ \mathcal{G}_n^{in}(D) $	2	15	102	835	11,080	260,991	11,716,249
$ \mathcal{G}_n^{in}(D^L) $	0	0	0	18	455	16,505	642,002
$ \mathcal{G}_n^{in}(D^Q) $	0	2	4	20	259	7,444	264,955

Table: Number of connected graphs with an *M*-cospectral mate.

Cospectral vs coinvariant

Figure: The fraction of connected graphs on n vertices having a M-cospectral mate is denoted as sp. The fraction of connected graphs on n vertices having a M-coinvariant mate is denoted as *in*.

$\deg -D$ and $\operatorname{trs} -A$ matrices

Let deg(G) denote the diagonal matrix with the degrees of the vertices of G in the diagonal.

The transmission trs(u) of vertex u is $\sum_{v \in V(G)} dist(u, v)$. Let trs(G) denote the diagonal matrix with the transmissions of the vertices of G in the diagonal.

- the *degree-distance* matrix $D^{deg}(G)$ of G as deg(G) D(G),
- the transmission-adjacency matrix A^{trs}(G) of G as trs(G) - A(G),
- the signless degree-distance matrix D^{deg}₊(G) of G as deg(G) + D(G), and
- the signless transmission-adjacency matrix A^{trs}₊(G) of G as trs(G) + A(G).

Enumeration

п	4	5	6	7	8	9	10
$ \mathcal{G}_n $	6	21	112	853	11,117	261,080	11,716,571
$ \mathcal{G}_n^{sp}(D^{deg}) $	0	2	6	40	485	9,784	355,771
$ \mathcal{G}_n^{sp}(D_+^{deg}) $	0	0	0	61	901	24,095	852,504
$ \mathcal{G}_n^{sp}(\mathcal{A}^{trs}) $	0	2	6	38	413	7,877	299,931
$ \mathcal{G}_n^{sp}(A_+^{trs}) $	0	0	0	43	728	19,757	765,421
$ \mathcal{G}_n^{in}(D^{deg}) $	2	2	6	34	538	17,497	902,773
$ \mathcal{G}_n^{in}(D^{deg}_+) $	2	11	46	495	7,169	209,822	10,815,879
$ \mathcal{G}_n^{in}(A^{\mathrm{trs}}) $	0	2	4	22	240	6,642	237,118
$ \mathcal{G}_n^{in}(A^{trs}_+) $	0	0	0	16	456	15,952	605,625

Table: Number of connected graphs with an *M*-cospectral mate and with an *M*-coinvariant mate for the matrices $A^{trs}(G)$, $A^{trs}_+(G)$, $D^{deg}_+(G)$ and $D^{deg}(G)$.

Classic vs new

Figure: The parameters $sp_n(M)$ and $in_n(M)$ represent the fraction of graphs with *n* vertices that have at least one *M*-cospectral or *M*-coinvariant mate, respectively. We only show the five best performing parameters.

Cospectral and coinvariant trees

There are no D_+^{deg} -cospectral trees nor D^{deg} -cospectral trees nor A^{trs} -cospectral trees with up to 20 vertices.

There are no A_+^{trs} -coinvariant trees nor A^{trs} -coinvariant trees with up to 20 vertices.

Conjecture

- Trees are determined by spectrum of the matrices D_{+}^{deg} , D^{deg} and A^{trs} , and
- Trees are determined by the SNF of the matrices A_{+}^{trs} and A^{trs} .

Graphs determined by SNF

Theorem

Complete graphs are determined by the SNF of the matrices A_{+}^{trs} , D_{+}^{deg} and D_{+}^{deg} .

Future research

- To explore relations between combinatorial properties of graphs with spectrum and SNF of deg-dist and trs-adj matrices.
 - A^{trs} is related with L
- to explore variations of deg-dist and trs-adj matrices.
 - generalized spectrum and generalized SNF (complements).
 - normalized versions

Main references

- A. Abiad & C.A. Alfaro, Enumeration of cospectral and coinvariant graphs. Appl. Math. Comput. 408 (2021) 126348.
- A. Abiad, C.A. Alfaro & R.R. Villagrán. **Distinguishing graphs by their spectra, Smith normal forms and complements.** arXiv preprint arXiv:2304.07217
- C.A. Alfaro & O. Zapata The degree-distance and transmission-adjacency matrices. arXiv preprint arXiv:2212.05297

Thank you

 \checkmark

Carlos A. Alfaro alfaromontufar@gmail.com

1

4

4