The degree-distance and transmission-adjacency matrices 25 th Conference of the ILAS 2023

Carlos A. Alfaro (BANXICO) joint work with Octavio Zapata (UNAM)

- To understand to what extent graphs are characterized by their spectra.
- motivated by the graph isomorphism problem

Cospectral graphs

M-cospectral graphs are graphs that share M-spectrum. Where M might be A, L, Q, D, D^{L} and D^{Q}.

Let \mathcal{G}_{n} be the set of connected graphs with n vertices, and $\mathcal{G}_{n}^{S P}(M)$ be the set of graphs in \mathcal{G}_{n} with a M-cospectral mate.

n	4	5	6	7	8	9	10
$\left\|\mathcal{G}_{n}\right\|$	6	21	112	853	11,117	261,080	$11,716,571$
$\left\|\mathcal{G}_{n}^{s p}(A)\right\|$	0	0	2	63	1,353	46,930	$2,462,141$
$\left\|\mathcal{G}_{n}^{s p}(L)\right\|$	0	0	4	115	1,611	40,560	$1,367,215$
$\left\|\mathcal{G}_{n}^{s p}(Q)\right\|$	0	2	10	80	1,047	17,627	615,919
$\left\|\mathcal{G}_{n}^{s p}(D)\right\|$	0	0	0	22	658	25,058	$1,389,986$
$\left\|\mathcal{G}_{n}^{S p}\left(D^{L}\right)\right\|$	0	0	0	43	745	20,455	787,851
$\left\|\mathcal{G}_{n}^{s p}\left(D^{Q}\right)\right\|$	0	2	6	38	453	8,168	319,324

Table: Number of connected graphs with an M-cospectral mate.

Coinvariant graphs

- Two matrices M, N are equivalent if there exist unimodular matrices P and Q with entries in \mathbb{Z} satisfying $M=P N Q$.
- The Smith normal form of a integer matrix M, denoted by $\operatorname{SNF}(M)$, is the unique diagonal matrix $\operatorname{diag}\left(f_{1}, \ldots, f_{r}, 0, \ldots, 0\right)$ equivalent to M such that $r=\operatorname{rank}(M)$ and $f_{i} \mid f_{j}$ for $i<j$.
- The invariant factors (or elementary divisors) of M are the integers in the diagonal of the $\operatorname{SNF}(M)$.

Example

$$
L\left(K_{4}\right)=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right] \quad \operatorname{SNF}\left(L\left(K_{4}\right)\right)=\operatorname{diag}(1,4,4,0)
$$

Coinvariant graphs

Two graphs G and H are M-coinvariant if the SNFs of $M(G)$ and $M(H)$, computed over \mathbb{Z}, are the same.
$\mathcal{G}_{n}^{\text {in }}(M)$ is the set of graphs in \mathcal{G}_{n} with a M-coinvariant mate.

n	4	5	6	7	8	9	10
$\left\|\mathcal{G}_{n}\right\|$	6	21	112	853	11,117	261,080	$11,716,571$
$\left\|\mathcal{G}_{n}^{i n}(A)\right\|$	4	20	112	853	11,117	261,080	$11,716,571$
$\left\|\mathcal{G}_{n}^{i n}(L)\right\|$	2	8	57	526	8,027	221,834	$11,036,261$
$\left\|\mathcal{G}_{n}^{i n}(Q)\right\|$	2	11	78	620	7,962	201,282	$10,086,812$
$\left\|\mathcal{G}_{n}^{i n}(D)\right\|$	2	15	102	835	11,080	260,991	$11,716,249$
$\left\|\mathcal{G}_{n}^{i n}\left(D^{L}\right)\right\|$	0	0	0	18	455	16,505	642,002
$\left\|\mathcal{G}_{n}^{i n}\left(D^{Q}\right)\right\|$	0	2	4	20	259	7,444	264,955

Table: Number of connected graphs with an M-cospectral mate.

Cospectral vs coinvariant

Figure: The fraction of connected graphs on n vertices having a M-cospectral mate is denoted as $s p$. The fraction of connected graphs on n vertices having a M-coinvariant mate is denoted as in.

deg $-D$ and trs $-A$ matrices

Let $\operatorname{deg}(G)$ denote the diagonal matrix with the degrees of the vertices of G in the diagonal.

The transmission $\operatorname{trs}(u)$ of vertex u is $\sum_{v \in V(G)} \operatorname{dist}(u, v)$. Let $\operatorname{trs}(G)$ denote the diagonal matrix with the transmissions of the vertices of G in the diagonal.

- the degree-distance matrix $D^{\operatorname{deg}}(G)$ of G as $\operatorname{deg}(G)-D(G)$,
- the transmission-adjacency matrix $A^{\text {trs }}(G)$ of G as $\operatorname{trs}(G)-A(G)$,
- the signless degree-distance matrix $D_{+}^{\text {deg }}(G)$ of G as $\operatorname{deg}(G)+D(G)$, and
- the signless transmission-adjacency matrix $A_{+}^{\mathrm{trs}}(G)$ of G as $\operatorname{trs}(G)+A(G)$.

Enumeration

n	4	5	6	7	8	9	10
$\left\|\mathcal{G}_{n}\right\|$	6	21	112	853	11,117	261,080	$11,716,571$
$\left\|\mathcal{G}_{n}^{\text {sp }}\left(D^{\text {deg }}\right)\right\|$	0	2	6	40	485	9,784	355,771
$\left\|\mathcal{G}_{n}^{\text {sp }}\left(D_{+}^{\text {deg }}\right)\right\|$	0	0	0	61	901	24,095	852,504
$\left\|\mathcal{G}_{n}^{\text {sp }}\left(A^{\text {trr }}\right)\right\|$	0	2	6	38	413	7,877	299,931
$\left\|\mathcal{G}_{n}^{\text {sp }}\left(A_{+}^{\text {trs }}\right)\right\|$	0	0	0	43	728	19,757	765,421
$\left\|\mathcal{G}_{n}^{\text {in }}\left(D^{\text {deg }}\right)\right\|$	2	2	6	34	538	17,497	902,773
$\left\|\mathcal{G}_{n}^{\text {in }}\left(D_{+}^{\text {deg }}\right)\right\|$	2	11	46	495	7,169	209,822	$10,815,879$
$\left\|\mathcal{G}_{\text {in }}^{\text {in }}\left(A^{\text {trs }}\right)\right\|$	0	2	4	22	240	6,642	237,118
$\left\|\mathcal{G}_{n}^{\text {in }}\left(A_{+}^{\text {trs }}\right)\right\|$	0	0	0	16	456	15,952	605,625

Table: Number of connected graphs with an M-cospectral mate and with an M-coinvariant mate for the matrices $A^{\mathrm{trs}}(G), A_{+}^{\mathrm{trs}}(G), D_{+}^{\mathrm{deg}}(G)$ and $D^{\mathrm{deg}}(G)$.

Classic vs new

Figure: The parameters $s p_{n}(M)$ and $i n_{n}(M)$ represent the fraction of graphs with n vertices that have at least one M-cospectral or M-coinvariant mate, respectively. We only show the five best performing parameters.

Cospectral and coinvariant trees

There are no $D_{+}^{\text {deg }}$-cospectral trees nor $D^{\text {deg }}$-cospectral trees nor $A^{\text {trs }}$-cospectral trees with up to 20 vertices.
There are no $A_{+}^{\text {trs }}$-coinvariant trees nor $A^{\text {trs }}$-coinvariant trees with up to 20 vertices.

Conjecture

- Trees are determined by spectrum of the matrices $D_{+}^{\mathrm{deg}}, D^{\text {deg }}$ and $A^{\text {trs }}$, and
- Trees are determined by the SNF of the matrices $A_{+}^{\text {trs }}$ and A^{trs}.

Graphs determined by SNF

Theorem

Complete graphs are determined by the SNF of the matrices $A^{\text {trs }}$, $A_{+}^{\text {trs }}, D^{\text {deg }}$ and $D_{+}^{\text {deg }}$.

Future research

- To explore relations between combinatorial properties of graphs with spectrum and SNF of deg-dist and trs-adj matrices.
- $A^{\text {trs }}$ is related with L
- to explore variations of deg-dist and trs-adj matrices.
- generalized spectrum and generalized SNF (complements).
- normalized versions

Main references

- A. Abiad \& C.A. Alfaro, Enumeration of cospectral and coinvariant graphs. Appl. Math. Comput. 408 (2021) 126348.
- A. Abiad, C.A. Alfaro \& R.R. Villagrán. Distinguishing graphs by their spectra, Smith normal forms and complements. arXiv preprint arXiv:2304.07217
- C.A. Alfaro \& O. Zapata The degree-distance and transmission-adjacency matrices. arXiv preprint arXiv:2212.05297

