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Resumen

Consideremos una multigr�a�ca G y un v�ertice �jo s 2 V (G). Denotaremos por SP (G; s) al grupo de pilas

de arena de G, el cual es un subconjunto de vectores en NV (Gns), llamado las con�guraciones recurrentes de G.

La operaci�on en el grupo de pilas de arena est�a dada por la suma entrada por entrada entre vectores. El grupo

cr��tico de G, denotado por K(G), se de�ne como el cokernel de la transpuesta de la matriz Laplaciana reducida

de una multigra�ca. Esto es

K(G) = Zn=ImL(G; s)t :

Se sabe que el grupo de pilas de arena de una multigr�a�ca G es isomorfo al grupo cr��tico de G.

En esta tesis estamos interesados en dar una descripci�on algebraica del grupo de pilas de arena de una

multigr�a�ca. Comenzamos con una descripci�on de la estructura algebraica del grupo de pilas de arena de Cn y

una descripci�on combinatoria explicita de los generadores de SP (Cn; s).

Introducimos el concepto nuevo de homomor�smo uniforme, f : G ! H, entre dos multigr�a�cas G y H. Con

este homomor�smo obtenemos un homomor�smo inyectivo, f̃ , entre los grupos SP (c(G); s) y SP (c(H); s). El

concepto de homomor�smo uniforme est�a entre un homomor�smo completo y un isomor�smo de multigr�a�cas.

Sea G2H el producto cartesiano de dos multigr�a�cas G y H. El producto cartesiano de dos con�guraciones

a de c(G) y b de c(H) est�a dado por

(a2b)(u;v) = au + bv para todos u 2 V (G) y v 2 V (H):

Probamos que si a y b son con�guraciones recurrentes, entonces a2b es una con�guraci�on recurrente.

M�as a�un, probamos que la funci�on ĩG : SP (c(G); s)! SP (c(G2H); t) dada por

ĩG(a) = a2e;

es un homomor�smo injectivo can�onico entre SP (c(G); s) y SP (c(G2H); t).

Este hecho nos lleva a establecer una conjetura la cual nos proporciona una descripci�on algebraica y com-

binatoria del grupo de pilas de arena del cono del hipercubo Qd de dimensi�on d .

M�as precisamente,

K(c(Qd)) �

d⊕
i=1

Z
(di )
2i+1

= Zd3 � Z
(d2)
5 � � � � � Zd2d�1 � Z2d+1:

y

SP (c(Qd); s) =
⊕

f�2f0;1gdg

K̃� �
⊕

f�2f0;1gdg

Z2j�j+1 � K(c(Qd));

donde K̃� = fg�(r; t) + (d � j�j)1 j 0 � r; t � d and r = j�j or t = j�jg � Z2j�j+1 for all � 2 f0; 1gd y

g�(r; t) 2 N
V (Qd ) est�a dado por

g�(r; t)a =

r si � � a es par;

t si � � a es impar:

v
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Finalmente, damos una forma alternativa de calcular las con�guraciones recurrentes de una multigr�a�ca

usando programaci�on lineal entera. Esta t�ecnica puede ser usada para calcular la identidad del grupo de pilas

de arena y el orden de una con�guraci�on recurrente. Adem�as desarrollamos un programa en C++ que c�alcula

la estructura combinatoria del grupo de pilas de arena de una multigr�a�ca.



Abstract

Given a multigraph G and a �xed vertex s 2 V (G), the abelian sandpile group of G, denoted by SP (G; s),

consists of a subset of vectors in NV (Gns), called the recurrent con�gurations of G and the stabilization of the

sum entry by entry of vectors as the group operation. It is known that the sandpile group of a multigraph is

isomorphic to its critical group. The critical group of G, denoted by K(G), is de�ned as the cokernel of the

transpose of the reduced Laplacian matrix of G

K(G) = Zn=ImL(G; s)t :

In this thesis we are interested in studying the combinatorial and algebraic structure of the sandpile group

of a multigraph. We begin with the description of the algebraic structure of the sandpile of Cn and an explicit

combinatorial description of the generators of SP (Cn; s). After that, we introduce a new concept, called uniform

homomorphism of multigraphs. If f : G ! H is a sobrejective uniform homomorphism, then we get an injective

homomorphism of groups

f̃ : SP (c(G); s)! SP (c(H); s):

The concept of uniform homomorphism is between the concepts of a full homomorphism and the isomorphism

of multigraphs.

If G2H is the cartesian product of the two multigraphs G and H, we de�ne the cartesian product of an a

con�guration of c(G) and a con�guration b of c(H) by

(a2b)(u;v) = au + bv for all u 2 V (G) and v 2 V (H):

We prove that, if a and b are recurrent con�gurations, then a2b is a recurrent con�guration. Moreover, we

prove that the mapping ĩG : SP (c(G); s)! SP (c(G2H); t) given by

ĩG(a) = a2e;

is a canonical injective homomorphism between SP (c(G); s) and SP (c(G2H); t).

This results lead us to establish a conjecture that gives us an algebraic and a combinatorial description of

the sandpile group of the cone of the hypercube Qd of dimension d . More precisely,

K(c(Qd)) �

d⊕
i=1

Z
(di )
2i+1

= Zd3 � Z
(d2)
5 � � � � � Zd2d�1 � Z2d+1:

and

SP (c(Qd); s) =
⊕

f�2f0;1gdg

K̃� �
⊕

f�2f0;1gdg

Z2j�j+1 =

d⊕
i=1

Z
(di )
2i+1

;

where K̃� = fg�(r; t) + (d � j�j)1 j 0 � r; t � d and r = j�j or t = j�jg � Z2j�j+1 for all � 2 f0; 1gd and

g�(r; t) 2 N
V (Qd ) is given by

g�(r; t)a =

r if � � a is even;

t if � � a is odd:

vii
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Finally, we also give an alternative way to compute the recurrent con�gurations of a multigraph using integer

linear programming. This technique can be used in order to calculate the identity of the sandpile group and the

order of a recurrent con�guration. The last part of this thesis consist of the development of a C++ program

that computes the combinatorial structure of the sandpile group of any multigraph.
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Introduction

The main goal of this master thesis is the study of the sandpile group of a graph, in particular we are

interested in the combinatorial structure of the generators of the sandpile group of the cone of the cartesian

product of some graphs.

This thesis represent the �rst time that the combinatorial structure of the generators of the sandpile group

is studied, all the previous results in the literature only describe the abstract structure of the sandpile group of

a graph.

The concept of sandpile group was introduced by Bak et. al. [3, 4] in 1987 and Dhar [24, 23] in 1990. The

sandpile group is also known as the critical group [8], the Jacobian group [7] and the Picard group [34, 35].

The sandpile automaton is also know as the chip-�ring game, see [9, 10, 7, 8].

In the last twenty years, the sandpile group has been studied by several authors, see for instance [35, 37, 8,

30, 22, 16, 28, 40, 15, 29, 33, 32, 2, 18, 19, 20].

There exist several ways to de�ne the sandpile group of a graph, maybe the most simple way is the following:

Given a graph G = (V; E) the sandpile group of G, denoted by K(G), is de�ned as Z-module given by

Z�K(G) = ZjV j=ImL(G);

where L(G) is the Laplacian matrix of the graph G

L(G)i ;j =

di if i = j;

��i ;j in other case.

In section one of chapter two we present a combinatorial alternative way to de�ne the sand pile group of a

graph through recurrent con�gurations. The combinatorial version of the sand pile group of a graph, is denoted

by SP (G; s) where s 2 V (G). Is not di�cult to prove that K(G) � SP (G; s) for all s 2 V (G). The main

di�erence between this two notations for the sandpile group of a graph is that when we use SP (G; s) we are

thinking mainly in their combinatorial structure and not only in their group structure.

In general is very di�cult to calculate the sandpile group of a graph. There are very few families of graphs

for which the critical group structure has been completely determined, such as:

(1) Complete graphs, in 1991 [35];

(2) Complete multipartite graphs, in 1991 [35];

(3) Cycles, in 1992 [37];

(4) Wheels, in 1999 [8];

(5) The cartesian product of complete graphs, in 2003 [30];

(6) The dihedral group graph, in 2003 [22];

(7) The M�obius ladder, in 2006, [16];

(8) The square of a cycle C2
n , in 2006, [28];

(9) Regular trees, in 2007, [40];

1



2 Introduction

(10) The cartesian product P42Cn, in 2008 [15];

(11) The cartesian product K32Cn, in 2008 [29];

(12) The cartesian product Km2Pn, in 2008 [33];

(13) Trees, in 2009 [32]; etc.

This thesis is divided in two chapters and one appendix:

i) Preliminaries,

ii) The sandpile group of a multigraph,

iii) CSandPile.

In chapter 1 we present the material necessary in order to introduce the results in the rest of the thesis.

Chapter 2 contains the main result of the thesis and is divided in seven sections. In the �rst section you can

�nd the combinatorial de�nition of the sandpile group of a graph through stable and recurrent con�gurations.

In the rest of the sections we study the sandpile group of a graph with connectivity one, the sandpile group of

a thick cycle Cn, the generators of a thick C3, the relation between the sandpile group and the integer linear

programming, the group homomorphism that is induced by a uniform homomorphism of graphs, the group

homomorphism that is induced by the inclusion of a graph G in a cartesian product of graphs G2H and �nally

the combinatorial structure of the sand pile group of the cone of the hypercube Qd .

More precisely, section two contain a description of the sand pile group of a graph with connectivity one in

function of theirs blocks.

Theorem 2.23 Let G a multigraph and G1, G2, ..., Gl be its blocks, then

K(G) = K(G1)�K(G2)� � � � �K(Gl):

Section three contains the description of the sandpile group of the thick cycle Cn and the combinatorial

description of the powers of a generator of some thick K(C3).

Theorem 2.28 Let Cn be the thick cycle with mi the multiplicity between vi and vi+1, then

�i =

gcd
{∏

1�j1<���<ji�nmj1 � � �mji

}
if 1 � i � n � 1;

(�1)n
∑n

i=1m1m2 � � � m̂i � � �mn if i = n:

Theorem 2.33 Let � 2 Z+, if gcd(m1; m2) = 1, gcd(m2; m3) = 1 or gcd(m3; m1) = 1 then

K(C3(�m1; �m2; �m3)) = Z� � Z�(m1m2+m2m3+m3m1)

and e =
(⌈

m1

m3

⌉
�m3;

⌈
m1

m2

⌉
�m2

)
is the identity of SP (C3(�m1; �m2; �m3); v1).

Theorem 2.34 Let m 2 Z+, then (m; 0) is a generator of SP (C3(m; 1; 1); v1) and

k(m; 0) =

(m � j; m) if k = 2j � 2m;

(m; j) if k = 2j + 1 � 2m + 1;

in SP (C3(m; 1; 1); v1).

Theorem 2.35 Let m 2 Z+ such that gcd(m; 2) = 1, then (m+1; m) is a generator of SP (C3(m; 2; 2); v1)

and

k(m + 1; m) =


(m + 1; m � k + 1) if 1 � k � m + 1;

(k �m � 1�
1+(�1)k

2 ; m +
1+(�1)k+1

2 ) if m + 2 � k � 2m + 2;

(m; 3m + 2� k) if 2m + 3 � k � 3m + 2;

(k � 3(m + 1)�
1+(�1)k+1

2 ; m + 1�
1+(�1)k+1

2 ) if 3m + 3 � k � 4m + 4:

Section four contains a result that give an alternative way to calculate the recurrent representative of a

given con�guration using integer linear programming. As corollaries we get the identity of the sandpile group of

a graph, the degree of a recurrent con�guration.
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Theorem 2.36 Let G be a multigraph, s 2 V (G), 0 � c � d(G;s)�1 a stable con�guration of (G; s), where

d(G;s) = (dG(v1); :::; dG(vn)), and x� an optimal solution of the following integer linear problem:

maximize jxj

subject to 0 � L(G; s)tx+ c � d(G;s) � 1(1)

x � 0;

then L(G; s)tx� + c 2 SP (G; s) and [c] = [L(G; s)tx� + c].

Corollary 2.38 Let G be a multigraph, s 2 V (G) and x� an optimal solution of the following integer linear

problem:

maximize jxj

subject to 0 � L(G; s)tx � d(G;s) � 1(2)

x � 0;

then L(G; s)tx� 2 SP (G; s) is the identity of K(G).

Corollary 2.41 Let G be a multigraph, s 2 V (G), c a recurrent con�guration of (G; s), and (d; x)� an

optimal solution of the following integer linear problem:

minimize d

subject to dc� L(G; s)tx = 0(3)

d � 1; x � 0;

then d is the degree of c in K(G).

In section �ve we de�ne the new concept of a uniform homomorphism of graphs and we prove that every

surjective uniform homomorphism f : G ! H induce an injective homomorphism of groups f̃ : K(c(H))/K(c(G))

Theorem 2.48 Let G and H be multigraphs and f : G ! H be a surjective uniform homomorphism, then

the induced mapping f̃ : SP (c(H); s)! SP (c(G); s) given by

f̃ (u)v = ux 2 N
V (G) for all v 2 Sx = f �1(x);

is an injective homomorphism of groups, that is, K(c(H)) / K(c(G)).

In section six we use the inclusion homomorphism of graphs between G and G2H in order to induce an

injective homomorphism of groups ĩG : K(c(G))! K(c(G2H)).

Theorem 2.52 Let G and H be two multigraphs, s 2 V (c(G)) n V (G) and t 2 V (c(G2H)) n V (G2H) and

iG : ZjV (G)j ! ZjV (G2H)j given by

iG(a)(u;v) = au + ev for all u 2 V (G) and v 2 V (H);

where a = (av )v2V (G) 2 Z
jV (G)j and e = (ev )v2V (H) 2 SP (c(H); s) the identity of the sandpile group of c(H).

Then the induced mapping

ĩG : SP (c(G); s)! SP (c(G2H); t)

is well de�ned, that is, a is a recurrent con�guration of c(G) if and only if ĩG(a) is a recurrent con�guration of

c(G2H). Moreover,

ĩG : K(c(G))! K(c(G2H))

is an injective homomorphism of groups.

Section seven contains the main result of this thesis. The two previous results are used in order to prove the

main theorem of this thesis. This theorem give us a combinatorial description of the powers of the generators

of the sand pile group of the cone of the hypercube Qd . The corollary give us a nice formula of the sand pile

group of the cone of the hypercube Qd .

Theorem 2.56 Let K̃� = fg�(r; t) + (d � j�j)1 j 0 � r; t � d and r = j�j or t = j�jg for all � 2 f0; 1gd .

Then
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(i) Z2j�j+1 � K̃� / K(c(Qd)) for all � 2 f0; 1g
d ,

(i i) d1 = g1(d; d) is the identity of K̃� for all � 2 f0; 1gd ,

(i i i) K̃� \ K̃�0 = d1 for all � , �0 2 f0; 1gd ,

(iv) K̃� \
⊕

f�0 j supp(�0)(supp(�)g K̃�0 = d1 for all � 2 f0; 1gd ,

(v) ĩ�;1(SP (c(Q�); s)) =
⊕

f�0 j supp(�0)�supp(�)g K̃�0 for all � 2 f0; 1gd ,

(v i) ĩ�;1(SP (c(Q�); s)) \ ĩ�;1(SP (c(Q�0); s)) = ĩ�;1(SP (c(Q���0); s)) for all �0; � 2 f0; 1gd ,

where (a� b)i = ai � bi for all i .

Corollary 2.57 Let d be a natural number, then the sandpile group of the cone of the hypercube c(Qd) is

given by:

K(c(Qd)) �

d⊕
i=1

Z
(di )
2i+1

= Zd3 � Z
(d2)
5 � � � � � Zd2d�1 � Z2d+1:

Finally, the appendix contains the code of a program developed in C++, called CSandPile. This program

was created in order to calculate the stable and recurrent con�gurations of a given graph, the powers of a

recurrent con�guration, the inverse of a recurrent con�guration, the identity of the sandpile group, the order of

the sandpile group, etc.

Almost all the results presented in this thesis are original, see for instance 2.23, 2.28, 2.33, 2.34, 2.35, 2.36,

2.38, 2.41, 2.48, 2.55, 2.59, and 2.60, and are collected in the article [1].



CHAPTER 1

Preliminaries

In this chapter we shall see the necessary tools that will be needed to develop the theory of sandpile group.

Mainly, we give a glimpse in graph theory and Z-modules.

1 Graph Theory

In this section we shall see topics needed in the development of the theory of sandpile group, such as graphs and

its subgraphs, connectedness, graph homomorphisms, the Laplacian matrix, some operations on graphs: the

cone and the cartesian product.

1.1 Graphs and Subgraphs

De�nition 1.1. Let V be a �nite nonempty set. A graph G is a pair (V; E), where E is a subset of the set

of unordered pair of elements of V .

The elements of V and E are called vertices and edges, respectively. If G = (V; E) is a graph, the vertices

of G will be denoted by V (G), and the edges by E(G). The number of vertices is the order of the graph and is

denoted by jGj. An edge e = fx; yg will be denoted by xy , then xy and yx are the same edge. Also, e = xy is

said to be incident to x and y . Furthermore, x and y are said to be incident to e = xy , and x and y are called

the ends of e.

v1 v2 v3

v4

e1 e2 e3

e4

e5

e6

e7

e8

G = (V; E)

where

V = fv1; v2; v3; v4g and E = fe1; e2; e3; e4g

with

e1 = v1v4, e2 = v2v4, e3 = v3v4 and e4 = v4v4
e5 = v1v2, e6 = v1v2, e7 = v2v3, e8 = v2v3,

Figure 1.1. A graph.

We always can represent a graph by mean of a �gure, where the vertices are represented by a point and an

edge by a line joining its ends, see �gure 1.1.

5



6 Chapter 1. Preliminaries

A loop is an edge incident to a unique vertex. A set of two or more edges with the same ends are called

multiple edges. The number of multiple edges with ends u and v is called the multiplicity and denoted by �u;v .

For instance in �gure 1.1, e4 is a loop and, e5 and e6 are multiple edges with �v1;v2 = 2.

Two di�erent vertices are independent if they are not adjacent. A set of vertices of G is independent if no

two of its vertices are adjacent.

De�nition 1.2. A simple graph is a graph without loops and multiple edges.

Figure 1.2. A simple graph.

If both multiple edges and loops are allowed, the graph is called pseudograph. However, we are more

interested in graphs with no loops and multiple edges.

De�nition 1.3. A multigraph is a graph with multiple edges and no loops.

Figure 1.3. A multigraph.

The underlying graph of a multigraph is obtained by reducing all nonzero edge multiplicities to 1.

De�nition 1.4. A graph G0 = (V 0; E0) is a subgraph of the graph G = (V; E), if V 0 � V and E0 � E and is

denoted by G0 � G.

An induced subgraph G[V 0] = (V 0; E0) is a subgraph of G = (V; E) such that every edge e 2 E having its

ends in V 0 is in E0. A spanning subgraph is a subgraph G0 � G with the same vertex set than G. In �gure 1.4

we illustrate the induced and spanning subgraphs of the Petersen graph.

De�nition 1.5. The degree of a vertex v 2 G is the number of incident edges to v and is denoted by

dG(v) = d(v).

A graph is k-regular if every vertex has degree equal k . The number minfd(v)jv 2 V (G)g is the minimum

degree and it is denoted by �(G). Similarly, the number maxfd(v)jv 2 V (G)g is the maximum degree and it is

denoted by �(G). If we count all vertex's degree, we count the edges twice, then we have∑
v2G

d(v) = 2jE(G)j:

Another type of graph is when the edges have a direction.
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(a) G (b) An induced subgraph of G (c) A spanning subgraph of G

Figure 1.4. Induced and spanning subgraph.

De�nition 1.6. A directed graph or digraph D = (V; A) consists of a �nite nonempty set V and a subset of

the set of ordered pair of elements of A.

a

u v

Figure 1.5. A digraph.

The elements of A are called arcs. An arc a = (u; v) will be denoted by uv . In contrast to edges, uv and

vu are di�erent arcs. If a = uv is an arc from u to v , u is called the tail and v is called the head , see �gure

1.5. In digraph case, we will de�ne outdegree d+
D
(v) of a vertex v as the number of arcs with tail v and the

indegree d�
D
(v) of a vertex v as the number of arcs with head v .

De�nition 1.7. A pseudo-symmetric digraph D is a digraph such that d+
D
(v) = d�

D
(v) for all v 2 V (D).

Figure 1.6. A pseudosymmetric digraph.

1.2 Connectedness

A path P = v0v2v3:::vk is a sequence of di�erent vertices such that vi and vi+1 are adjacent. Also, we say that

P is a path from v0 to vk is a (v0; vk)-path, and k is the length of P . The distance dG(u; v) of two vertices

u; v 2 V (G) is the shortest length of the (u; v)-paths.

De�nition 1.8. A graph is connected if for every di�erent pair of vertices u, v there is a (u; v)-path.

A cut-vertex is a vertex which removed increases the number of components.



8 Chapter 1. Preliminaries

u

v

Figure 1.7. A path.

De�nition 1.9. A block is a maximal connected subgraph without a cut-vertex.

G B1 B2 B3

Figure 1.8. A graph and its blocks.

In the following of the subsection we will see some kinds of connected graphs and some of its properties.

One of the simpler graphs a cycle.

De�nition 1.10. A cycle Cn is a 2-regular connected graph of n vertices, see �gure 1.9.

Figure 1.9. The cylce C7.

Observe that cycles are simple graphs when vertices are more or equal than 3. Cycles helps us here to de�ne

another kind of graph.

De�nition 1.11. A tree T is a connected graph without cycles as subgraph, see �gure 1.10.

Figure 1.10. A tree.

The spanning tree is the graph that is a tree and a spanning subgraph at the same time. The number of

spanning trees of G is denoted by �(G).

An edge e 2 G is deleted by taking E(G) without e as the edge set. The graph with the edge e deleted is

denoted by Gne. An edge e 2 G is contracted by deleting e and identifying its ends. We denote the graph with

e contracted by G=e. See �gure 1.11.

Now, we will see an equation that it serves to calculate the number of spanning trees in a recursively way.
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e

(a) G (b) Gne (c) G=e

Figure 1.11. Deleting and contracting an edge.

Proposition 1.12. If e is an edge, then �(G) = �(Gne) + �(G=e).

Proof. Consider the following statements.

� Due to the fact that T is a spanning tree having e as an edge in G if and only if T=e is a spanning

tree in G=e, the number of spanning trees that have e as an edge is equal to the number of spanning

trees in G=e.

� It is clear that, the number of spanning trees that does not have e as an edge is equal to the number

of spanning trees in Gne.

On the other hand, since the number of spanning trees is equal to the sum of the number of spanning trees

having e as an edge and the number of spanning trees that does not have e as an edge, then the formula

follows. �

De�nition 1.13. The complete graph of n vertices Kn is the simple graph such that every pair of vertices

are adjacent.

Figure 1.12. The complete graph of 6 vertices.

De�nition 1.14. The n-cube Qn is the graph whose vertices are binary n-tuples with two vertices being

adjacent if they di�er in precisely one coordinate position.

(0; 0; 0) (1; 0; 0)

(1; 1; 0)(0; 1; 0)

(0; 0; 1) (1; 0; 1)

(1; 1; 1)(0; 1; 1)

Figure 1.13. 3-cube Q3.

1.3 Homomorphisms

De�nition 1.15. Let G and H be graphs. A homomorphism from G to H is a mapping f from V (G) to

V (H) such that f (u)f (v) 2 E(H) whenever uv 2 E(G).

For instance, if G and H are as in �gure 1.14, then the following is a homomorphism from G to H

f (x) =

v1 if x = u

v2 in other case
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u

v1 v2

(a) G (b) H

Figure 1.14. Homomorphism of graph.

Theorem 1.16. [27] If f : G ! H is a homomorphism, then

dH(f (u); f (v)) � dG(u; v) for all u; v 2 V (G):

where dG(u; v) and dH(u; v) are the distance between u and v in G and H, respectively.

If G and H are digraphs, we can change, in the de�nition of homomorphism, edges by arcs.

De�nition 1.17. Let G and H be graphs. A isomorphism from G to H, written G � H, is a bijective mapping

f from V (G) to V (H) such that f (u)f (v) 2 E(H) if and only if uv 2 E(G).

Graphs in �gure 1.15 are isomorphic, by mean of the isomorphisms vi 7�! ui and ui 7�! wi .

v1

v5

v2

v8

v10

v6

v7

v3

v4

v9

u1

u2

u5 u8

u10

u9u4

u3

u7 u6

w1

w2
w3

w4

w5

w6
w7

w8

w9

w10

Figure 1.15. Isomorphic graphs.

1.4 The Laplacian Matrix of a graph

First of all, we will see two usual ways to associate a matrix to any graph. These are the incidence and adjacency

matrices.

De�nition 1.18. The incidence matrix B(G) is the matrix such that the element B(G)i ;j is 1 if the j-th edge

is incident to the i-th vertex, and 0 in other case.

De�nition 1.19. The adjacency matrix A(G) is the matrix such that the element A(G)i ;j is the multiplicity

of the multiple edges between the vertices vi and vj .

De�nition 1.20. The Laplacian matrix L(G) of the graph G is de�ned by

L(G)i ;j =

di if i = j;

��i ;j in other case,

where �i ;j is the multiplicity of the edges between the vertex i and j .



Section 1. Graph Theory 11

v1

v2

v3

v4

e1

e2

e3

e4e5

e6

Adjacency Incidency

v1 v2 v3 v4 e1 e2 e3 e4 e5 e6
v1 0 1 1 1 v1 1 1 1 0 0 0

v2 1 0 1 1 v2 1 0 0 1 0 1

v3 1 1 0 1 v3 0 1 0 1 1 0

v4 1 1 1 0 v4 0 0 1 0 1 1

Figure 1.16. Adjacency and incidence matrix.

For instance, the following matrix is the laplacian matrix of the graph in �gure 1.16.

L(G) =


3 �1 �1 �1

�1 3 �1 �1

�1 �1 3 �1

�1 �1 �1 3


If D(G) is the diagonal matrix such that di ;i = dG(vi), then L(G) = D(G)� A(G).

We will denote by M[u; v ], the matrix obtained by removing of the matrix M the row corresponding to the

vertex u and the column corresponding to the vertex v . And, M[u] will denote the matrix obtained by removing

of M the row and column corresponding to the vertex u.

Lemma 1.21. Let G be a graph. If u is a vertex of G and e an edge incident to u, then

detL(G)[u] = detL(Gne)[u] + detL(G=e)[u]:

Proof. We can number the vertices in order that u = vn. Suppose e = uvj . Now, consider the following

detL(G)[u] = (�1)j+1L(G)j;1 detL(G)[u][vj ; v1] + � � �+ (�1)j+jL(G)j;j detL(G)[u][vj ; vj ]

+ � � �+ (�1)j+n�1L(G)j;n�1 detL(G)[u][vj ; vn�1]

= ((�1)j+1L(G)j;1 detL(G)[u][vj ; v1] + � � �+ (�1)j+j(L(G)j;j � 1) detL(G)[u][vj ]

+ � � �+ (�1)j+n�1L(G)j;n�1 detL(G)[u][vj ; vn�1]) + detL(G)[u][vj ]

= detL(Gne)[u] + detL(G)[u][vj ]

Since, the vertex set of G=e is equal to V (G)nu and the incidence in vertices di�erent of u and vj does not

change, we have that L(G=e)[u] = L(G)[u][vj ]. Thus, it turns out that

detL(G)[u] = detL(Gne)[u] + detL(G=e)[u]:

�

Theorem 1.22. Let G be a graph. If u 2 V (G), then detL(G)[u] is the number of spanning trees of G.

Proof. Let e = uv be an incident edge to u. We will proof that

detL(Gne)[u] = �(Gne) and detL(G=e)[u] = �(G=e)

by induction on the number of edges. Let us denote n the number of vertices and m the number of edges.

For m = 1,

� if n = 2, then G =
u v

. Thus, Gne =
u v

and G=e =
v

. Because of that, we have

L(Gne) =
[
0

]
and L(G=e) =

[
1

]
then detL(Gne)[u] = �(Gne) = 0 and detL(G=e)[u] = �(G=e) = 1.

� if n � 3, then detL(Gne)[u] = �(Gne) = 0 and detL(G=e)[u] = �(G=e) = 0.
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Now assume that m � 2. There exist an edge e 0 di�erent of e. Then, by induction hypothesis, proposition

1.12 and lemma 1.21 we have

detL(Gne)[u] = detL(Gnene 0)[u] + detL(Gne=e 0)[u]

= �(Gnene 0) + �(Gne=e 0)

= �(Gne);

and

detL(G=e)[u] = detL(G=ene 0)[u] + detL(G=e=e 0)[u]

= �(G=ene 0) + �(G=e=e 0)

= �(G=e):

Thus, the formula follows. �

1.5 Operations on Graphs

De�nition 1.23. The cone c(G) of a graph G is de�ned as the graph that has V (G) adding a new vertex u

as its vertex set, and E(G) [ fuv j v 2 V (G)g as its edge set.

u

(a) G (b) c(G)

Figure 1.17. Cone of a graph.

De�nition 1.24. The cartesian product G12G2 of two graphs G1 and G2 is the simple graph with V (G1)�

V (G2) as its vertex set and two vertices u1v1 and u2v2 are adjacent in G12G2 if and only if either u1 = u2 and

v1v2 2 E(G2), or v1 = v2 and u1u2 2 E(G1).

u1

u2

u3

u4

u5 v1 v2

(u1; v1)

(u2; v1)
(u3; v1)

(u4; v1)
(u5; v1)

(u1; v2)

(u2; v2)

(u3; v2)

(u4; v2)

(u5; v2)

(a) C5 (b) K2 (c) C52K2

Figure 1.18. Cartesian product.

Lemma 1.25. G12(G22G3) � (G12G2)2G3
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Proof. Let us de�ne f : V ((G12G2)2G3) ! V (G12(G22G3)) such that f ((x; y); z) = (x; (y ; z)) for all

x 2 G1, y 2 G2 and z 2 G3. So, we need to proof that ((x1; y1); z1)((x2; y2); z2) 2 E((G12G2)2G3) if and only

if (x1; (y1; z1))(x2; (y2; z2)) 2 (G12(G22G3)).

)) Let ((x1; y1); z1)((x2; y2); z2) 2 E((G12G2)2G3), thus

(1) (x1; y1) = (x2; y2) and z1z2 2 E(G3), or

(2) z1 = z2 and (x1; y1)(x2; y2) 2 E(G12G2).

If (1) happens, we have x1 = x2, y1 = y2 and z1z2 2 E(G3). Hence, x1 = x2 and (y1; z1)(y2; z2) 2

E(G22G3). Then, (x1; (y1; z1))(x2; (y2; z2)) 2 (G12(G22G3)).

If (2) happens, we have either z1 = z2, x1 = x2 and y1y2 2 E(G2), or z1 = z2, y1 = y2 and x1x2 2

E(G1). Hence, either x1 = x2 and (y1; z1)(y2; z2) 2 E(G22G3), or x1x2 2 G1 and (y1; z1) = (y2; z2).

In both cases, it turns out that (x1; (y1; z1))(x2; (y2; z2)) 2 (G12(G22G3)).

() Let (x1; (y1; z1))(x2; (y2; z2)) 2 E(G12(G22G3)), thus

(1) x1 = x2 and (y1; z1)(y2; z2) 2 E(G22G3), or

(2) x1x2 2 G1 and (y1; z1) = (y2; z2).

If (1) happens, we have either x1 = x2, y1 = y2 and z1z2 2 E(G3), or x1 = x2, z1 = z2 and

y1y2 2 E(G2). Hence, either z1z2 2 E(G3) and (x1; y1) = (x2; y2) or, z1 = z2 and (x1; y1)(x2; y2) 2

E(G12G2). Then, in both cases ((x1; y1); z1)((x2; y2); z2) 2 E((G12G2)2G3).

If (2) happens, we have x1x2 2 E(G1) and z1 = z2, y1 = y2. Hence, z1 = z2 and (x1; y1)(x2; y2) 2

E(G12G2). Then, we have ((x1; y1); z1)((x2; y2); z2) 2 E((G12G2)2G3).

�

Then, inductively, we can forget the parentheses for products of more than 2 graphs. Also, we have that

the cartesian product

G = G12 � � �2Gn

can be de�ned by V (G) = f(v1; :::; vn) j vi 2 Gi for all i = 1; :::; ng, and two edges (v1; :::; vn) and (v 01; :::; v
0
n)

are adjacent if and only if there exist a unique j 2 f1; :::; ng such that vj = v 0
j
, and then vi , v

0
i
for i , j .

If we take K2 = (f0; 1g; f01g), it is easy to see the following corollary.

Corollary 1.26. Qn � K22 � � �2K2︸          ︷︷          ︸
n-times

.

Lemma 1.27. G12G2 � G22G1

Proof. Let f : V (G12G2) ! V (G22G1) such that (x; y) 7! (y ; x). It is clear that f is bijective. Now,

(u1v1)(u2v2) 2 E(G12G2) , either u1 = u2 and v1v2 2 E(G2), or v1 = v2 and u1u2 2 E(G1). If and only if,

either v1 = v2 and u1u2 2 E(G1), or u1 = u2 and v1v2 2 E(G2) , (v1u1)(v2u2) 2 E(G22G1). �

Since, G2K1 � G and by lemmas 1.27 and 1.25, we have the following proposition:

Proposition 1.28. Let G be set of graphs. Then G(2; K1) is monoid.

2 Z-modules and the Smith Normal Form

In this section we shall focus in the properties of Z and the Smith normal form.

2.1 Z-modules

De�nition 1.29. A group is a set G together with a binary operation � : G�G ! G that satisfy the following

four conditions:

� a; b 2 G, a � b 2 G (closure),

� a; b; c 2 G implies that a � (b � c) = (a � b) � c (associativity),
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� G has a identity element e such that a � e = e � a = a for every a 2 G (identity),

� For all a 2 G there exist an element a�1 such that a � a�1 = a�1 � a = e (inverse).

For instance, let Sn be the set of all bijective mappings of a set of n elements onto itself. The set Sn is

closed under the composition. It is because the composition of injective mappings is injective and the composition

of surjective mappings is again surjective. Also, Sn is associative under composition, since � � (� � 
)(x) =

�(�(
(x))) = (���)�
(x) for all �; �; 
 2 Sn and x 2 [n] := f1; :::; ng. In addition, 1[n], such that 1[n](x) := x

for all x 2 [n], is in Sn, and 1[n] � � = � � 1[n](x) = �. Additionally, If � 2 Sn, then de�ne ��1 such that

�(x) 7! x for all x 2 [n], therefore � ���1 = ��1 �� = 1[n]. Then Sn with the composition of maps is a group,

called the symmetric group.

De�nition 1.30. A group G is called abelian if for every a; b 2 G, a � b = b � a.

For example, the set Z of all integers under the ordinary addition is an abelian group. Actually, Z is a

commutative ring.

De�nition 1.31. A commutative ring is a set R together with two binary operations + : R � R ! R and

� : R � R! R such that R with + operation is an abelian group, and it satisfy the following conditions:

(1) a; b 2 R) a � b 2 R,

(2) a � (b � c) = (a � b) � c for all a; b; c 2 R,

(3) a � (b + c) = a � b + a � c and (a + b) � c = a � c + b � c for all a; b; c 2 R,

(4) There exist an element 1 2 R such that 1 � a = a � 1 = a for a 2 R,

(5) a � b = b � a for all a; b 2 R.

Another common examples are Q, R and C.

De�nition 1.32. A subset S of a group G is called subgroup if s 2 S implies s�1 2 S and s; t 2 S imply

s � t 2 S.

The set 2Z = f2i j i 2 Zg is an additive subgroup of Z. Let G be a group, If a 2 G we de�ne hai = fai j

i 2 Zg. hai is a subgroup called the cyclic subgroup generated by a.

De�nition 1.33. A group G is called cyclic if there exist a 2 G such that hai = G.

The congruence class fb j b � a mod ng of an integer a mod n will be denoted by a. The set Zn of

all congruence classes mod n is an abelian group with the operation a + b = a + b, 0 as identity and 1 as

generator.

De�nition 1.34. A Z-module is an abelian group M together with an operation � : Z�M ! M such that

(1) (a + b) � x = a � x + b � x ,

(2) a � (x + y) = a � x + a � y ,

(3) a � (b � x) = (ab) � x ,

(4) 1 � x = x .

for all a; b 2 Z and x; y 2 M.

Since there is a unique way to express n � x as x + � � � + x n-times for every n 2 Z, we have that every

Z-module is an abelian group.

De�nition 1.35. Let M and N be Z-modules. A map ' : M ! N is called Z-module homomorphism (or

simply homomorphism) if, for all a 2 Z and m; n 2 M,

(1) '(a �m) = a � '(m),

(2) '(m + n) = '(m) + '(n).

De�nition 1.36. A submodule N of M is an additive subgroup of M that if a 2 Z y x 2 N, then a � x 2 N.

De�nition 1.37. Let M be a Z-module and N � M be a submodule. We de�ne the quotient module M=N

by

M=N = fm + N j m 2 Mg
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Thus M=N is the set of equivalence classes of elements of M, where m; n 2 M are equivalent if m� n 2 N.

De�nition 1.38. Let Mi , i 2 I, be Z-modules. The direct sum
⊕

i2I is de�ned by⊕
i2I

Mi = f(mi)i2I j mi 2 Mi ; mi , 0 for only �nitely many ig :

Proposition 1.39. Let ' : M ! N be an homomorphism, then

Im(') � M=Ker('):

Proof. Let us de�ne the map  : M=Ker(') ! Im(') by  (m + Ker(')) := '(m).  is well de�ned

because if x � y , therefore x �Ker(') = y �Ker(') and thus '(x) =  (x +Ker(')) =  (y +Ker(')) = '(y).

 is a homomorphism because  (x +y +Ker(')) = '(x +y) = '(x)+'(y) =  (x +Ker('))+ (y +Ker('))

and  (a � x + Ker(')) = '(a � x) = a � '(x) = a �  (x + Ker(')).  is surjective by de�nition. Now, let

 (x + Ker(')) = '(x) = 0, therefore x 2 Ker('). Then x + Ker(') = Ker(') which is the 0-element in

M=Ker('). �

Theorem 1.40. Let M1, M2 be Z-modules and N1 submodule of M1 and N2 submodule of M2. If M =

M1 �M2 and N = N1 � N1, then

M=N � M1=N1 �M2=N2:

Proof. Consider the Z-module homomorphism ' : M1 � M2 ! M1=N1 � M2=N2 such that (x; y) 7!

(x +N1; y +N2). Clearly, ' is surjective, thus Im(') = M1=N1�M2=N2. We will proof that Ker(') = N1�N2.

If (x; y) 2 N1 � N2, then '(x; y) = (x + N1; y + N2) = (N1; N2) which is 0-element in M1=N1 � M2=N2.

On the other hand, if (x; y) 2 Ker('), then '(x; y) = (N1; N2), thus x 2 N1 and y 2 N2. it turns out in

(x; y) 2 N1 � N2. Finally, by Proposition 1.39, the equation M=N � M1=N1 �M2=N2 is evident. �

De�nition 1.41. A Z-moduleM is called �nitely generated ifM =
∑n

i=1 Z�mi for suitable m1; m2; :::; mn 2 M.

Then, we write M = hm1; m2; :::; mni, and m1; m2; :::; mn are called generators of M.

Theorem 1.42. Let K be a submodule of Zn is �nitely generated by at most m � n elements.

Proof. We will proof it by induction. Let K a submodule of Zn. If n = 1, let m the least positive integer in

K. All elements in K are multiple of m. Because if there is an element p that it is not divisible by m, then by the

division algorithm there exist q, and r such that p = mq + r with 0 � r < m. That is, r is linear combination

of m and p least than m which is a contradiction. Thus, K = mZ.

Now, let n � 2 and suppose that every submodule of Zn�1 is �nitely generated. Let K a submodule of Zn.

Let m the least positive integer of the �rst components of the elements of K. Next, let k = (k1; k2; :::; kn) 2 K.

By the same argument in the case n = 1, we have that the �rst component of the elements of K is a multiple of

m. Hence k1 = qm. Choose an element (m; x2; :::; xn) 2 K. Thus k = q(m; x2; :::; xn)+(0; k2�qx2; :::; kn�qxn).

The set of elements of the form (k2�qx2; :::; kn�qxn) are a submodule in Zn�1. Using the induction hypothesis,

the submodule form (0; k2 � qx2; :::; kn � qxn) is �nitely generated. And adding (m; x2; :::; xn) to the generators

set, it turns out that K is �nitely generated. �

Let M � Zn=K be Z-module. By theorem 1.42, we conclude that K is �nitely generated. Hence, we can

assume that the set (f1; f2; :::; fm) is a set of generators of the submodule K and let (e1; e2; :::; en) be a base of

Zn. Writing fi = ai ;1e1 + ai ;2e2 + � � � + ai ;nen, we have a matrix m � n matrix A = (ai ;j) that is known as the

relations matrix of the ordered set of generators (f1; :::; fn) in terms of the ordered base (e1; :::; en). We can

choose any other base (e 01; :::; e
0
n) for Z

n such that e 0
i
=

∑n
j=1 pi ;jej where P = (pi ;j) is an invertible matrix in

Mn(Z) with inverse P�1 = (p0
i ;j
). On the other hand, if Q = (qi ;j) is an invertible matrix in Mn(Z) with inverse

Q�1 = (q0
i ;j
), then f 01; :::; f

0
n , where f

0
k
=

∑n
i=1 qk;i fi , is another set of generators for K. Furthermore,

f 0l =

n∑
i=1

ql ;i fi =
∑
i ;j

ql ;iai ;jej =
∑
i ;j;k

ql ;iai ;jp
0
j;ke

0
k :

Hence the relation matrix of the f 0's relative to the e 0's is A0 = QAP�1.
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De�nition 1.43. Two m � n matrices A;B with entries in Z are said to be equivalent if there exist an

invertible matrices P 2 Mm(Z) and Q 2 Mn(Z) such that B = PAQ.

We Summarize the before information in the following lemma.

Lemma 1.44. If A;B 2 Mn(Z) are equivalent, then Zn=A � Zn=B.

Proposition 1.45. Let A be a matrix in Mn(Z) and M = Zn=A. Then, M � Zd1 � � � � � Zdn with di j di+1 if

and only if there exist invertible matrices P and Q such that

PAQ =


d1 � � � 0
:::

: : :
:::

0 � � � dn


Proof. () Applying recursively proposition 1.39 we have the result.

)) It follows from the proof of theorem 1.50, (that, is in the next section). �

Remark 1.46. Since P and Q are invertible we have that the number of elements in M � Zn=A is det(A) =

d1d2 � � � dn.

De�nition 1.47. Let ' : M ! N be an homomorphism, then

Coker(') := N=Im(')

is called the cokernel of '.

Remark 1.48. Let G be a connected graph and L(G) be the Laplacian matrix. Considering L(G) as a linear

map from Zn to itself, its cokernel has the form

Zn=Im(L(G)) � Z�K(G);

where K(G) is de�ned to be the critical group (also called the Picard group [2], Jacobian group [4], or sandpile

group [7]).

2.2 The Smith Normal Form

In the following we will consider the problem of selecting among the matrices equivalent to a given matrix A one

that has a particular simple form. We will obtain this matrix by means of the following operations:

i. Interchanging two rows or two columns,

ii. Multiplying a row or a column by �1,

iii. Adding a multiple of a row to another row, or adding a multiple of a column to another column,

which can be described by mean of product of matrices:

I. Interchanging two rows (column) i ; j is performed by a left (right) product of A by the identity matrix which

the rows (column) i and j had been interchanged,

II. Multiplying the i-th row (column) is performed by a left (right) product of A by the identity matrix which

the i-th row (column) has been multiplied by �1,

III. Adding a multiple of the i-th row (column) to the j-th row (column) is performed by the left (right) product

of A by a matrix of the following form

1 � � � 0 � � � 0 � � � 0
:::

: : :
:::

:::
:::

:::
:::

0 � � � 1 � � � 0 � � � 0
:::

:::
:::

: : :
:::

:::
:::

0 � � � m � � � 1 � � � 0
:::

:::
:::

:::
:::

: : :
:::

0 � � � 0 � � � 0 � � � 1


or



1 � � � 0 � � � 0 � � � 0
:::

: : :
:::

:::
:::

:::
:::

0 � � � 1 � � � m � � � 0
:::

:::
:::

: : :
:::

:::
:::

0 � � � 0 � � � 1 � � � 0
:::

:::
:::

:::
:::

: : :
:::

0 � � � 0 � � � 0 � � � 1


:
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The above matrices are called elementary matrices of types I, II and III . It is clear that elementary matrices

of types I, II and III have det = �1 and they are invertible.

De�nition 1.49. A matrix A 2 Mn(Z) is in Smith normal form if it is diagonal, ai ;i � 0 for all 0 � i � n and

ai ;i j ai+1;i+1 when ai ;i , 0 and ai+1;i+1 , 0.

For example, the matrix 
3 0 0 0

0 6 0 0

0 0 12 0

0 0 0 0


is in Smith normal form.

Theorem 1.50. If A 2 Mm;n(Z), then A is equivalent to the diagonal matrix with

diagfd1; d2; :::; dn; 0; :::; 0g =



d1 � � � 0 0 � � � 0
:::

: : :
:::

:::
:::

:::

0 � � � dn 0 � � � 0

0 � � � 0 0 � � � 0
:::

:::
:::

:::
: : :

:::

0 � � � 0 0 � � � 0


where the di , 0 and di j dj if i � j .

Proof. If A = 0 there is nothing to do. Interchanging rows and columns we can bring the integer with least

absolute value to the (1; 1) position. So we can suppose it is there initially. Let A = (ai ;j) and d1 be the greatest

common divisor of a1;1 and a2;1. There exist p; q 2 Z such that pa1;1+ qa2;1 = d1, and since d1 divides a1;1 and

a2;1 there exist � and � such that a1;1 = d1� and a2;1 = d1�. Hence p�+ q� = 1. Thus the matrix

P1;2 =


p q 0

�� � 0

0 0 In�2


is invertible. But when P1;2 is multiplied by the left to A we obtain

d1 a01;2 � � �

0 a02;2 � � �

a3;1 a3;2 � � �
:::

:::
: : :


Following the before idea, we can make zero all the entries of �rst column and �rst row, except by the position

(1; 1), to obtain a matrix equivalent to A of the form
b1;1 0 � � � 0

0 b2;2 � � � b2;n
:::

:::
: : :

:::

0 bn;2 � � � bn;n


Now, if there exist a bi ;j with 2 � i ; j � n such that b1;1 - bi ;j , we add the j-th column to the �rst column. And

we eliminate the �rst row in the same way. Finishing this process we obtain a new matrix, that, the position

(1; 1) divides the position (i ; j) because in the (1; 1) position is the g.c.d. of the �rst row. Thus we can eliminate

bi ;j 's that are not divisible by b1;1, and we get a matrix that the position (1; 1) divides each position in (i ; j) with

2 � i ; j � n. Now, we repeat recursively the before idea to the sub-matrix
bk;k � � � bk;n
:::

: : :
:::

bn;k � � � bn;n


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for 2 � k � n. It turns out the result. �

Example 1.51. Let us compute the Smith normal form of the matrix[
21 105

14 147

]
using the method described in the proof of the theorem. First of all, we interchange the �rst and the second

row. [
14 147

21 105

]
Thus, the least element is in the (0; 0) position. Now, the greatest common divisor of 14 and 147 is 7, and

since

147 = 10 � 4 + 7;

14 = 2 � 7 + 0;

we have that 1 � 147� 10 � 14 = 7 and then 1 � 21� 10 � 2 = 1. Hence[
14 147

21 105

] [
�10 21

1 �2

]
=

[
7 0

105 231

]
:

Since 105 is divisible by 7, it turns out that it is equivalent to[
7 0

0 231

]
:

The diagonal elements in the Smith normal form are called invariant factors. The following theorem will

give us formulas to obtain the invariant factors.

Theorem 1.52. Let A be a matrix in Mm;n(Z) and suppose the rank of A is r . For each i � r , let �i be

the g.c.d. of the i � i minors of A. Then any set of invariant factors for A di�er by unit multipliers from the

elements

d1 = �1; d2 = �2�
�1
1 ; :::; dr = �r�

�1
r�1:

Proof. Let Q = (qi ;j) be an m �m matrix in Mn(Z). Then the (i ; j)-entry of QA is
∑

k qi ;kak;j . Thus the

rows of QA are linear combinations of the rows of A. Hence the i � i minors of QA are linear combinations of

the i � i minors of A and so the g.c.d. of the i � i minors of A is divisor of the g.c.d. of the i � i minors of QA.

Similarly, if P 2 Mn(Z), the columns of AP are linear combinations of the columns of A, therefore the g.c.d. of

the i � i minors of A is divisor of the g.c.d. of the i � i minors of AP . Using these two facts and symmetry of

the equivalence, we have that if A and B are equivalent, the g.c.d. of the i � i minors of A and B are the same.

Now, let B = diagfd1; :::; dr ; 0; :::; 0g be the Smith normal form of A. Since if i � j , then di j dj , we have that

the g.c.d. of the i � i minors of B �i is d1d2 � � � di . Thus, �i=�i�1 = di . �



CHAPTER 2

The sandpile group of a multigraph

The concept of sandpile group was introduced by Bak et. al. [3, 4] in 1987 and Dhar [24, 23] in 1990.

The sandpile group is also know as the critical group [8], the Jacobian group [7] and the Picard group [34, 35].

The sandpile automaton is also know as the chip-�ring game, see [9, 10, 7, 8].

In the last twenty years, the sandpile group has been studied by several authors, see for instance [2, 8, 30,

19, 28, 20, 22, 29, 33, 32, 35, 37, 16, 15, 40, 18].

This chapter contains the main result of the thesis and is divided in seven sections. In the �rst section you can

�nd the combinatorial de�nition of the sand pile group of a graph through stable and recurrent con�gurations.

In the rest of the sections we study the sandpile group of a graph with connectivity one, the sandpile group of

a thick cycle Cn, the generators of a thick C3, the relation between the sandpile group and the integer linear

programming, the group homomorphism that is induced by a uniform homomorphism of graphs, the group

homomorphism that is induced by the inclusion of a graph G in a cartesian product of graphs G2H and �nally

the combinatorial structure of the sand pile group of the cone of the hypercube Qd .

1 Stable and recurrent con�gurations

In the following, every multigraph will be connected. Also, every multigraph G will have a distinguished vertex

s 2 V (G), called sink. The non-sink vertices set will be denoted by ~V .

1.1 Stable con�gurations

De�nition 2.1. Let G = (V; E) be a multigraph with V = fv1; :::; vng. A con�guration of (G; s) is an element

u 2 Nn.

4

2

3

0 5

v3

v4

v5

v1 v2

Figure 2.1. The con�guration (0; 5; 4; 2; 3) on C5.

19
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De�nition 2.2. Let G = (V; E) be a multigraph and u a con�guration. A non-sink vertex v is called stable

if degG(v) < uv .

For instance, in �gure 2.1 the vertex v1 is stable and the others are unstable.

De�nition 2.3. Let G = (V; E) be a multigraph and u a con�guration. A con�guration is called stable if

every v 2 ~V is stable.

1

0

3

0 1

v3

v4

s

v1 v2

Figure 2.2. A stable con�guration.

Toppling the vertex vi is performed by decreasing ui by his degree di , and adding the multiplicity �i ;j to each

adjacent vertex to vj . For instance, taking the unstable con�guration u = (1; 0; 2; 2; 2) in the graph C5 with v5
as sink, the stable con�guration v = (1; 1; 1; 1; 3) will be reached after a �nite sequence of topplings. See �gure

2.3.

2

2

2

1 0

v3

v4

s

v1 v2

0

3

2

1 1

v3

v4

s

v1 v2

1

1

3

1 1

v3

v4

s

v1 v2

Figure 2.3. Toppling an unstable con�guration of C5 until obtain a stable con�guration.

Now, let �i be equal to the i th-row of the Laplacian matrix L(G) for i = 1; :::; n. Thus, toppling vi means

subtract �i to u.

Example 2.4. The Laplacian matrix of the graph in �gure 2.3 is

L(C5) =


2 �1 0 0 �1

�1 2 �1 0 0

0 �1 2 �1 0

0 0 �1 2 �1

�1 0 0 �1 2


First, we have the con�guration u = (1; 0; 2; 2; 2) subtracting �3 = (0;�1; 2;�1; 0) we obtain the con�guration

(1; 1; 0; 3; 2). Finally, we subtract �4 = (0; 0;�1; 2;�1) and we get the con�guration s(u) = (1; 1; 1; 1; 3), that

it is stable.

Remark 2.5. Note in the example 2.4 that juj =
∑n

i=1 ui and jv j =
∑n

i=1 vi are equal, it is because each

j�i j = 0. This fact will be used in the proof of Proposition 2.6

If all unstable vertices are toppled, a stable con�guration is reached, the stable con�guration associated to

u will be denoted by s(u). Then, s(u) = u � L(G)tb for a b 2 Nn. Furthermore, it always exists and is unique.
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Proposition 2.6. For any positive con�guration u there exist a unique stable con�guration v obtained by

toppling the unstable vertices.

Proof. Existence. Suppose fv1; :::; vng is the set of vertex of the graph G and vn is the sink. Let Xk = fv 2

V (G) j dG(vn; v) = kg, where dG(u; v) denotes the distance between u and v . Let d be the greatest distance

to the sink vn, to any con�guration u we associate the (d + 1)-tuple �(u) = (�0(u); �1(u); :::; �d(u)) given by

�i(u) =
∑
v2Xi

uv :

We consider the following lexicographic order � on these d-tuples:

�(u) � �(v), exist 0 � k � d such that �0(u) = �0(v); :::; �k�1(u) = �k�1(v); �k(u) < �k(v):

Since j�i j = 0, then if u; v 2 Nn with u = v+L(G)tb we have that juj =
∑d

i=0 �(u)i is equal to jv j =
∑d

i=0 �(v)i .

Hence, there exist a �nite number of u 2 Nn with the same sum in coordinates. Thus, there exist a �nite

ascending chain for � with the same sum in coordinates.

Uniqueness. It is consequence of the commutativity of the toppling operator; (u��i)��j = (u��j)��i . �

We will de�ne the following operation in con�gurations:

De�nition 2.7. Let u; v con�gurations in SP (G; s).

u + v := (u1 + v1; :::; un + vn):

Proposition 2.8. If s(u) = u0 and s(v) = v 0, then s(u + v) = s(u0 + v 0).

Proof. Since s(u) = u0 and s(v) = v 0, there exist cu; cv 2 N
n such that u0 = u�cuL(G) and v

0 = v�cvL(G)

are stable con�gurations. Therefore, u0 + v 0 = u + v � (cu + cv )L(G). Since u
0 + v 0 is not necessary an stable

con�guration, we have that s(u + v) = s(u0 + v 0). �

Since we can not topple the sink vn, we will say that two con�gurations c and c 0 are the same if cv = c 0v
for all v 2 ~V .

De�nition 2.9. Two con�gurations c and c 0 are equal, if cv = c 0v for all v 2 ~V .

Then some times we will refer to c as if it becomes to NV (G)ns . On the other hand, let c 2 NV (G)ns a

con�guration, the support of c is the set supp(c) = fv 2 Ṽ j cv , 0g.

1.2 Recurrent con�gurations

We will de�ne some special con�gurations which have the property of being an abelian group.

De�nition 2.10. The con�guration u is recurrent if there exist a non-zero con�guration v such that s(u+v) =

u.

Example 2.11. Consider the con�guration (1; 1; 1; 1) in C5 with v5 as sink. Here we omit the sink. Now,

when have (1; 1; 1; 1) + (1; 0; 0; 1) = (2; 1; 1; 2). Toppling v1, the con�guration (0; 2; 1; 2) is obtained. Then

we topple v4, and we get (0; 2; 2; 0). This time, we topple v2 and we obtain (1; 0; 3; 0). Finally, we topple v3 to

obtain (1; 1; 1; 1). And thus (1; 1; 1; 1) is a recurrent con�guration in C5 with v5 as sink.

De�nition 2.12. A con�guration � 2 NV (G)ns � 1 of (G; s) is called a burning con�guration if

� � = ztL(G; s) for some z 2 ZV (G)ns ,

� for all v 2 V (G) n s, there exists a path to v from some vertex of supp(�).

Theorem 2.13. [39] Let � be a burning con�guration of (G; s), then a con�guration c 2 NV (G)ns of (G; s)

is recurrent if and only if

s(c+ �) = c with �ring vector equal to �tL(G; s)�1:



22 Chapter 2. The sandpile group of a multigraph

Theorem 2.14. [39] There exist a unique burning con�guration �min such that

�tminL(G; s)
�1 � �

0tL(G; s)�1 for all �
0

a burning con�guration:

Moreover �t
min
L(G; s)�1 � 1 with equality if and only if G has no a vertex v 2 V (G)ns with deg+

G
(v) < deg�

G
(v).

De�nition 2.15. Let G = (V; E) be a multigraph with s 2 V . The sandpile group of G is the set of recurrent

con�gurations and is denoted by SP (G; s).

For instance, in the next proposition, we shall describe the sandpile group of the cycle. To avoid any confuse,

in the next computations L(G; vn)i will denote the i th-row of the reduced Laplacian L(G; vn).

Proposition 2.16. The sandpile group of the cycle is composed of the following elements in Nn�1:

� the vector of ones, and,

� the vectors of ones except for a unique zero.

Proof. It is clear that the stable con�gurations are of the form (x1; :::; xn�1) with 0 � xi � 1. We have that

L(G; vn)1 = (2; �1; 0; � � � 0; 0)

L(G; vn)2 = (�1; 2; �1; � � � 0; 0)
:::

:::
:::

:::
:::

:::
:::

:::

L(G; vn)n�1 = (0; 0; 0; � � � �1; 2)

Therefore, toppling the i th-vertex means subtract L(G; vn)i to the con�guration. Hence, Toppling every vertex

means to subtract b = (1; 0; :::; 0; 1) to the con�guration. Then, if c is a con�guration as in the sentence we

have that s(c + b) = c . And �nally we conclude that c is recurrent.

As we shall proof later, corollary 2.31, the number of elements in the sandpile group of the cycle is n. Then,

we found the complete description of the elements of SP (Cn; s). �

In the following, vn will be the sink. Let us de�ne u � v := s(u + v). So, we will see that sandpile group

with the operation � is e�ectively a group.

Remark 2.17. Let �max = (dG(v1))� 1; :::; dG(vn)� 1), and � = � + 1. Then, it is easy to see that

i. �max is stable.

ii. � is unstable.

iii. (� � s(�))i > 0 for all 1 � i � n � 1.

iv. � � s(�) 2 h�1;�2; :::;�ni

Lemma 2.18. Let � = 2� � 2s(�). If u is recurrent, then s(u + �) = u.

Proof. Let u recurrent. Hence, there exist a con�guration v such that s(u+v) = u. Then, applying several

times the remark 2.8, we have

s(u + v + �) = s(u + v + 2� � 2s(�)) = s(u + v + 2s(�)� 2s(�))

= s(u + v) = u:

On the other hand,

s(u + v + �) = s(u + �):

�

Proposition 2.19. For every con�guration u there exist a unique recurrent con�guration v such that u�v 2

h�1; :::;�n�1i.

Proof. Existence. Let u a con�guration. Since (��s(�))i > 0, we can �nd k > 0 such that u+k(��s(�)) >

�max . Now, let v = s(u + k(� � s(�))). Hence, v is stable. And, since u + k(� � s(�)) > �max , there exist a

con�guration c such that u + k(� � s(�)) > �max = v + c . Then, v is recurrent.
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Uniqueness. Let u and v two recurrent con�gurations such that u � v 2 h�1; :::;�n�1i. Then, u � v =∑n�1
i=1

c1�i . Take I = fi j ci < 0g and J = fi j ci � 0g, de�ne

� = u +
∑
i2I

(�ci)�i = v +
∑
i2J

ci�i :

Let k = maxv2~V fj cv j dvg, and � = � + k�. Hence

� = � + k� = u +
∑
i2I

(�ci)�i + k�

Since �v � �cvdv , we can topple �cv times each vertex of � . Then,

s(�) = s(u + k�) = s(u + �) = u

On the other hand,

� = � + k� = v +
∑
i2J

(ci)�i + k�

Since �v � cvdv , we can topple cv times each vertex of � . Then,

s(�) = s(v + k�) = s(v + �) = v

Thus, by proposition 2.6, we have that u = v . �

Thus, each element in Zn�1= h�1; :::;�n�1i has associated a unique recurrent con�guration. Since Z
n�1= h�1; :::;�n�1i

is an abelian group, it remains to proof that SP (G; s) is closed under �.

Theorem 2.20. Let G = (V; E) be a multigraph with s 2 V . The sandpile group is a group.

Proof. We will proof that SP (G; s) is closed under �. Let u; v 2 SP (G; s), then u; v are recurrent. Thus,

there exist u0 and v 0 such that s(u + u0) = u and s(v + v 0) = v . Now, s(u + u0 + v + v 0) = s(u + v) and

s(u + v + u0 + v 0) = s(s(u + v) + u0 + v 0). Hence, s(u + v) = u � v is recurrent. And, it turns out that

u � v 2 SP (G; s). �

In fact, the theorem 2.20 proves that SP (G; s) � Zn�1=L(G; s), where L(G; s) is the reduced Laplacian

with respect to s. Thus, the Sandpile group is isomorphic to the Critical group K(G) (Remark 1.48).

Another main result is that SP (G; u) � SP (G; v) for u , v 2 V (G).

Theorem 2.21. Let G = (V; E) be a multigraph. The sandpile group of G is independent of the sink.

Proof. Let P be the identity matrix such that the k-th row is interchanged to the n-th row. Since P�1 = P ,

we know that

L(G; vn) =



d1 ��1;2 � � � �1;n�1 ��1;n
��2;1 d2 � � � �2;n�1 ��2;n
:::

:::
: : :

:::
:::

��n�1;1 ��n�1;2 � � � dn�1 ��n�1;n
��n;1 ��n;2 � � � ��n;n�1 dn


:

Now, we have the following product

P � L(G; vn) � P =



d1 ��1;2 � � � �1;n � � � ��1;k
��2;1 d2 � � � �2;n � � � ��2;k
:::

:::
: : :

:::
:::

:::

��n;1 ��n;2 � � � dn � � � ��n;k
:::

:::
:::

:::
: : :

:::

��k;1 ��k;2 � � � ��k;n�1 � � � dk


= L(G; vk):

Thus, by Lemma 1.44 we have the result. �
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2 The sandpile group of a graph with connectivity one

Proposition 2.22. Let G = (V; E) be a connected graph, u be a cut vertex and B1; B2; :::; Bk , with k � 2,

be the connected components that remain after we remove u from G. Furthermore, let G1 = G[V (B1)[ u] and

G2 = G[V (B2) [ � � � [ V (Bk) [ u]. Then

K(G) = K(G1)�K(G2):

Proof. Without loss of generality, we can suppose that V (G1) = fv1; :::; vj = ug and V (G2) = fvj =

u; :::; vng. Since u is a cut vertex, there is no edges between va and vb with 1 � a � j � 1, j +1 � b � n. Then

the Laplacian matrix has the following form

L(G) =



d1 ��1;2 � � � �1:j�1 ��1;j 0 � � � 0

��2;1 d2 � � � �2:j�1 ��2;j 0 � � � 0
:::

:::
:::

:::
:::

:::
:::

:::

��j�1;1 ��j�1;2 � � � dj�1 ��j�1;j 0 � � � 0

��j;1 ��j;2 � � � ��j;j�1 dj ��j;j+1 � � � ��j;n
0 0 � � � 0 ��j+1;j dj+1 � � � ��j+1;n
:::

:::
:::

:::
:::

:::
:::

:::

0 0 � � � 0 ��n;j ��n;j+1 � � � dn


Taking u = vj as the sink, by Theorem 1.40 we have

K(G) = Zn�1=L(Gnu) � Zj�1=L(G1nu)� Z
n�j=L(G2nu) � K(G1)�K(G2):

�

Applying inductively the Proposition 2.22 we have the following theorem:

Theorem 2.23. Let G a multigraph and G1, G2, ..., Gl be its blocks, then

K(G) = K(G1)�K(G2)� � � � �K(Gl):

A thick tree is a multigraph T such that its underlying graph T 0 is a tree.

Corollary 2.24. [17] Let T be a thick tree, then

K(G) =

n�1⊕
i=1

Zmi
;

where mi is the multiplicity of the edge ei 2 E(T
0).

Proof. Since the blocks of a tree T are its edges, then the result it follows by the Theorem 2.23. �

3 The sandpile group of the thick cycle Cn

De�nition 2.25. The thick cycle Cn is the graph that its underlying graph is a cycle.

To simplify the notation, we will take m1 = �v1;v2 , m2 = �v2;v3 and so on. Therefore, the Laplacian matrix

of Cn is

L(Cn) =



m1 +mn �m1 � � � 0 �mn

�m1 m1 +m2 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � mn�2 +mn�1 �mn�1

�mn 0 � � � �mn�1 mn�1 +mn





Section 3. The sandpile group of the thick cycle Cn 25

vn�1

vnv1

v2

v3 vn�2

mn�1

mn

m1

m2 mn�2

Figure 2.4. Thick cycle Cn.

Taking vn as the sink, the reduced Laplacian matrix has form

L(Cn; vn) =



m1 +mn �m1 � � � 0 0

�m1 m1 +m2 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � mn�3 +mn�2 �mn�2

0 0 � � � �mn�2 mn�2 +mn�1


Lemma 2.26. The reduced Laplacian matrix L(Cn; vn) is equivalent to the matrix

R =



�m1 0 � � � 0 mn�1

0 �m2 � � � 0 mn�1

:::
:::

: : :
:::

:::

0 0 � � � �mn�2 mn�1

mn mn � � � mn mn�1 +mn


Proof. The matrix L(Cn; vn) is equivalent to the matrix which the �rst row is in the last one.



�m1 m1 +m2 �m2 � � � 0 0 0

0 �m2 m2 +m3 � � � 0 0 0

0 0 �m3 � � � 0 0 0
:::

:::
:::

: : :
:::

:::
:::

0 0 0 � � � �mn�3 mn�3 +mn�2 �mn�2

0 0 0 � � � 0 �mn�2 mn�2 +mn�1

m1 +mn �m1 0 � � � 0 0 0


The last matrix is equivalent to the matrix that was added the �rst column to de second, the second to the

third, and so on until the last column.



�m1 m2 0 � � � 0 0 0

0 �m2 m3 � � � 0 0 0

0 0 �m3 � � � 0 0 0
:::

:::
:::

: : :
:::

:::
:::

0 0 0 � � � �mn�3 mn�2 0

0 0 0 � � � 0 �mn�2 mn�1

m1 +mn mn mn � � � mn mn mn


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Therefore, we add the (n�1)-th row to the (n�2)-th row, thereupon, add the (n�2)-th row to the (n�3)-th

row, and we follow until we add the second to the �rst row.

�m1 0 0 � � � 0 0 mn�1

0 �m2 0 � � � 0 0 mn�1

0 0 �m3 � � � 0 0 mn�1

:::
:::

:::
: : :

:::
:::

:::

0 0 0 � � � �mn�3 0 mn�1

0 0 0 � � � 0 �mn�2 mn�1

m1 +mn mn mn � � � mn mn mn


Finally, we add the �rst row to the last one.

�m1 0 0 � � � 0 0 mn�1

0 �m2 0 � � � 0 0 mn�1

0 0 �m3 � � � 0 0 mn�1

:::
:::

:::
: : :

:::
:::

:::

0 0 0 � � � �mn�3 0 mn�1

0 0 0 � � � 0 �mn�2 mn�1

mn mn mn � � � mn mn mn�1 +mn


�

Lemma 2.27. The determinant of the matrix R, de�ned in 2.26, is equal to (�1)n
∑n

i=1m1m2 � � � m̂i � � �mn

Proof. The determinant of the matrix R is equal to

(�1)nmn det



0 0 � � � 0 mn�1

�m2 0 � � � 0 mn�1

0 �m3 � � � 0 mn�1

:::
:::

: : :
:::

:::

0 0 � � � �mn�2 mn�1



+ � � �+ (�1)n+i�1mn det



�m1 0 � � � 0 0 0 � � � 0 mn�1

0 �m2 � � � 0 0 0 � � � 0 mn�1

:::
:::

: : :
:::

:::
:::

:::
:::

0 0 � � � �mi�1 0 0 � � � 0 mn�1

0 0 � � � 0 0 0 � � � 0 mn�1

0 0 � � � 0 �mi+1 0 � � � 0 mn�1

:::
:::

:::
:::

:::
:::

: : :
:::

:::

0 0 � � � 0 0 0 � � � 0 mn�1

0 0 � � � 0 0 0 � � � �mn�2 mn�1



+ � � �+

+(�1)2n�2(mn�1 +mn) det



�m1 0 0 � � � 0 0

0 �m2 0 � � � 0 0

0 0 �m3 � � � 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 � � � �mn�3 0

0 0 0 � � � 0 �mn�2


On the other hand, we recall the following properties of the determinants:

(i) det

[
x a

0 B

]
= x det

[
B

]
.

(ii) det


0 a

x b

0 C

 = �x det

[
a

C

]
.
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Thus, applying (i) and (ii) to the before equation, we obtain that it is equal to

(�1)nmnm2 � � �mn�3 det

[
0 mn�1

�mn�2 mn�1

]
+ (�1)nmnm1 det



0 0 � � � 0 mn�1

�m3 0 � � � 0 mn�1

:::
:::

: : :
:::

:::

0 0 � � � 0 mn�1

0 0 � � � �mn�2 mn�1



+ � � �+ (�1)n+2i�2mnm1 � � �mi�1



0 0 � � � 0 mn�1

�mi+1 0 � � � 0 mn�1

:::
:::

: : :
:::

:::

0 0 � � � 0 mn�1

0 0 � � � �mn�2 mn�1


+ � � �+

(�1)n+2n�4(mn�1 +mn)m1 � � �mn�2:

Finally, we get that the determinant of R is

(�1)nm2 � � �mn + (�1)nm1m3 � � �mn + � � �+ (�1)nm1 � � � m̂i � � �mn + � � �+ (�1)nm1 � � �mn�1:

�

Theorem 2.28. Let Cn be the thick cycle with mi the multiplicity between vi and vi+1, then

�i =

gcd
{∏

1�j1<���<ji�nmj1 � � �mji

}
if 1 � i � n � 1;

(�1)n
∑n

i=1m1m2 � � � m̂i � � �mn if i = n:

Proof. Since �n that is equal to the determinant of the the matrix R, it remains to compute the �i of

the matrix R when 1 � i � n � 1. Note that the i � i minor is a linear combinations of multiplications of i

di�erent multiplicities. Due to gcd(a1x1 + � � � + anxn; x1; :::; xn) = gcd(x1; :::; xn), we just need to check that

each multiplications of i di�erent multiplicities is a i � i minor. In this sense, it is clear that there exist a i � i

minor that it is equal to a multiplication of the multiplicities mi , 0 � i � n � 2. If the multiplication has mn�1

and has not mn, then the minor, equal to it, is which is obtained from the rows, that contain the multiplicities

in the multiplication an another di�erent of the last row, and the columns that contain the multiplicities and

the last column. Analogously, if the multiplication has mn and has not mn�1, then the minor, equal to it, is

which is obtained from the rows, that contain the multiplicities in the multiplication and the last row, and the

columns that contain the multiplicities and another that di�erent to the last column. If the multiplication has

both mn�1 and mn, the minor is which is obtained from the rows and columns that contain the multiplicities

with index minor or equal ti n � 2 in the multiplication and the last row and the last column. Then we use

gcd(a1x1 + � � �+ anxn; x1; :::; xn) = gcd(x1; :::; xn) to obtain the equality. �

Thus, by proposition 1.45, theorem 1.52 and theorem 2.28 we have that

Theorem 2.29. Let Cn be the thick cycle with mi the multiplicity between vi and vi+1, then

K(Cn) = Z�1
�

 n⊕
i=2

Z�i=�i�1

 :
Now, we will show some special cases.

Corollary 2.30. Let Cn be the thick cycle with mi = m, the multiplicity between vi and vi+1, then

K(Cn) =

 n�1⊕
i=1

Zm

� Zn:
Proof. By theorem 2.28 we have that

� �1 = m

� �i=�i�1 = mi=mi�1 = m for 2 � i � n � 1.
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and since (�1)n
∑n

i=1m
n�1 = (�1)nnmn�1, then except for a product by�1, we have �n=�n�1 = nmn�1=mn�1 =

n. Thus, by theorem 2.29

K(Cn) =

 n�1⊕
i=1

Zm

� Zn:
�

An special case of the corollary 2.30 is when m = 1, then it follows trivially the following corollary:

Corollary 2.31. The sandpile group of the cycle of n vertices is Zn.

3.1 The generators of the sandpile group of thick C3

Proposition 2.32. Let m1; m2; m3 2 Z+, C3(m1; m2; m3) be the multigraph with V = fv1; v2; v3g as vertex

set, �v1;v2 = m3, �v1;v3 = m2, and �v2;v3 = m1.

v3

v1

v2

m2m3

m1

Then SP (C3(m1; m2; m3); v1) = Cv2 [ Cv3 , where

Cv2 = f(a; b) j m1 � a � m1 +m3 � 1 and 0 � b � m1 +m2 � 1g

and

Cv3 = f(a; b) j 0 � a � m1 +m3 � 1 and m1 � b � m1 +m2 � 1g:

Proof. Let C = (a; b) 2 Cv2 [ Cv3 , clearly C is a stable con�guration and C0 = C + (m3; m2) is an unstable

con�guration. Toppling both vertices on the con�guration C0, we have s(C0) = C0 � (m3; m2) = C. Therefore,

C is a recurrent con�guration and Cv2 [ Cv3 � SP (C(m1; m2; m3); v1).

On the other hand,

jCv2 [ Cv3 j = jCv2 j+ jCv3 j � jCv2 \ Cv3 j

= jCv2 j+ jCv3 j � jf(c; d) j m1 � c � m1 +m3 � 1 and m1 � d � m1 +m2 � 1gj

= m3(m2 +m1) + (m1 +m3)m2 �m3m2 = m2m3 +m1m3 +m1m2:

By theorem [6, Chapter 6] or theorem [26, 13.2.1], the number of recurrent con�gurations of a graph G is

det(L(G; s)). Since jCv2 [ Cv3 j is equal to det(L(C(m1; m2; m3); v1)), then Cv2 [ Cv3 is the set of recurrent

con�gurations of C(m1; m2; m3). �

Theorem 2.33. Let � 2 Z+, if gcd(m1; m2) = 1, gcd(m2; m3) = 1 or gcd(m3; m1) = 1 then

K(C3(�m1; �m2; �m3)) = Z� � Z�(m1m2+m2m3+m3m1)

and e =
(⌈

m1

m3

⌉
�m3;

⌈
m1

m2

⌉
�m2

)
is the identity of SP (C3(�m1; �m2; �m3); v1).

Proof. If gcd(m1; m2) = 1, gcd(m2; m3) = 1 or gcd(m3; m1) = 1, then gcd(m1; m2; m3) = 1. Therefore

�1 = �. And by theorem 2.28, �2 = �(m1m2 +m2m3 +m3m1). Finally, by theorem 2.29,

K(C3(�m1; �m2; �m3)) = Z� � Z�(m1m2+m2m3+m3m1):

On the other hand, since �m1 �
⌈
m1

m3

⌉
�m3 �

⌊
m1+m3

m3

⌋
�m3 � �(m1 + m3) � 1 and �m1 �

⌈
m1

m2

⌉
�m2 �⌊

m1+m2

m2

⌋
�m2 � �(m1 + m2) � 1, then by proposition 2.32 we have that

(⌈
m1

m3

⌉
�m3;

⌈
m1

m2

⌉
�m2

)
is a recurrent

con�guration. Now, since

s

(
2

(⌈
m1

m3

⌉
�m3;

⌈
m1

m2

⌉
�m2

))
=

(⌈
m1

m3

⌉
�m3;

⌈
m1

m2

⌉
�m2

)
;
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then
(⌈

m1

m3

⌉
�m3;

⌈
m1

m2

⌉
�m2

)
is the identity of SP (C3(�m1; �m2; �m3); v1).

�

Theorem 2.34. Let m 2 Z+, then (m; 0) is a generator of SP (C3(m; 1; 1); v1) and

k(m; 0) =

(m � j; m) if k = 2j � 2m;

(m; j) if k = 2j + 1 � 2m + 1;

in SP (C3(m; 1; 1); v1).

Proof. We will use induction on k , for k = 1 the result is trivial. We will assume that the result is true for

all k � i and we will prove the formula for i = k + 1. We need to consider to cases:

Case (k + 1 = 2j):

Using induction hypothesis, 2j(m; 0) = (2j�1)(m; 0)+(m; 0) = (m; j�1)+(m; 0) = (2m; j�1). Toppling

both vertices j � 1 times on con�guration (2m; j � 1) we get 2j(m; 0) = (2m� j +1; 0) and toppling the vertex

v2 on con�guration (2m � j + 1; 0) we get 2j(m; 0) = (m � j; m).

Case (k + 1 = 2j + 1):

Using induction hypothesis, (2j+1)(m; 0) = 2j(m; 0)+(m; 0) = (m� j; m)+(m; 0) = (2m� j; m). Toppling

both vertices m � j times on con�guration (2m � j; m) we get (2j + 1)(m; 0) = (m; j).

Since k(m; 0) , (m;m) for all 1 � k � 2m, then (m; 0) is a generator of SP (K3(m; 1; 1); v1). �

Theorem 2.35. Let m 2 Z+ such that gcd(m; 2) = 1, then (m+1; m) is a generator of SP (C3(m; 2; 2); v1)

and

k(m + 1; m) =


(m + 1; m � k + 1) if 1 � k � m + 1;

(k �m � 1�
1+(�1)k

2 ; m +
1+(�1)k+1

2 ) if m + 2 � k � 2m + 2;

(m; 3m + 2� k) if 2m + 3 � k � 3m + 2;

(k � 3(m + 1)�
1+(�1)k+1

2 ; m + 1�
1+(�1)k+1

2 ) if 3m + 3 � k � 4m + 4:

Proof. We will use induction to proof that (m + 1; m) is a generator. For k = 1 the result is trivial. Thus

we have the following cases:

Case (1 � k � m + 1):

Using induction hypothesis, we have k(m+1; m) = (m+1; m�k+2)+(m+1; m) = (2m+2; 2m�k+2),

s(k(m + 1; m)) = (m + 1; m � k + 1) by toppling both vertices m+1
2 times.

Case (k = m + 2):

Using induction hypothesis, we have (m+2)(m+1; m) = (m+1; 0)+(m+1; m) = (2m+2; m), we obtain

(m + 3; 1) by toppling both vertices m�1
2 times, and then s((m + 2)(m + 1; m)) = (1; m + 1) by toppling v2,

Case (m + 3 � k � 2m + 2):

Using induction hypothesis, we have k(m+1; m) = (k�1�m�1�
1+(�1)k�1

2 ; m+
1+(�1)k

2 )+(m+1; m) =

(k � 1 �
1+(�1)k�1

2 ; 2m +
1+(�1)k

2 ), s(k(m + 1; m)) = (k � m � 1 �
1+(�1)k

2 ; m +
1+(�1)k+1

2 ) by toppling both

vertices
m+(�1)k

2 times.

Case (2m + 3 � k � 3m + 2):

Using induction hypothesis, we have k(m+1; m) = (m; 3m� k +3)+ (m+1; m) = (2m+1; 4m� k +3),

s(k(m + 1; m)) = (m; 3m � k + 2) by toppling both vertices m+1
2 times.

Case (k = 3m + 3):

Using induction hypothesis, we have (3m + 3)(m + 1; m) = (m; 0) + (m + 1; m) = (2m + 1; m), we have

(m + 2; 1) by toppling both vertices m�1
2 times, then s((3m + 3)(m + 1; m)) = (0; m + 1) by toppling v2.

Case (3m + 4 � k � 4m + 4):

Using induction hypothesis, we have i(m+1; m) = (k�1�3(m�1)�
1+(�1)k

2 ; m+1�
1+(�1)k

2 )+(m+1; m) =

(k � 1� 2(m+1)�
1+(�1)k

2 ; 2m+1�
1+(�1)k

2 ), s(k(m+1; m)) = (k � 3(m� 1)�
1+(�1)k+1

2 ; m+1�
1+(�1)k+1

2 )

by toppling both vertices
m+(�1)k+1

2 times.
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Since k(m+1; m) , (m;m) for all 1 � k � 4m+4, then (m+1; m) is a generator of SP (K3(m; 2; 2); v1). �

4 Integer linear programming and the sandpile group

In this section we will see how to use integer linear programming in order to compute the recurrent con�guration

of a stable con�guration, the identity of the sand pile group of a graph and the degree of a recurrent con�guration.

Let G be a multigraph, V (G) = fv1; : : : ; vn; sg and d(G;s) = (dG(v1); :::; dG(vn)).

Theorem 2.36. Let G be a multigraph, s 2 V (G), 0 � c � d(G;s) � 1 a stable con�guration of (G; s) and

x� an optimal solution of the following integer linear problem:

maximize jxj

subject to 0 � L(G; s)tx+ c � d(G;s) � 1(4)

x � 0;

then L(G; s)tx� + c 2 SP (G; s) and [c] = [L(G; s)tx� + c].

Proof. Let x� be an optimal solution of the integer linear program (1). Clearly, r = L(G; s)tx�+c is an stable

con�guration of (G; s) and [c] = [r] in K(G). Therefore, only remains to prove that r is a recurrent con�guration

of (G; s). Let �min the burning con�guration as in Theorem 2.14, then by Theorem 2.13 r is a recurrent

con�guration of (G; s) if and only if s(r+�min) = r with �ring vector equal to �minL(G; s)
�1. If we assume that

r is not a recurrent con�guration of (G; s), then there exist b 2 NV (G)ns such that 0 � b < �minL(G; s)
�1 and

r+ �min � btL(G; s) is an stable con�guration of (G; s). Since r+ �min � btL(G; s) = c+ (x� + z� b)tL(G; s),

where z = �minL(G; s)
�1 and z� b > 0, then x0 = x� + z� b is a feasible solution of integer linear program (1)

with x� < x0; a contradiction to the optimality of x�. �

Example 2.37. Let c = (0; 0; 1; 0) a con�guration in (C5; v5). The corresponding integer linear program is:

maximize x1 + x2 + x3 + x4

subject to 
0

0

0

0

 �


2 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 2



x1
x2
x3
x4

+

0

0

1

0

 �

1

1

1

1


x � 0

We use the following code in Maple:

with(Optimization):

LPSolve( x[1]+x[2]+x[3]+x[4],

{

-x[3]+2*x[4] <= 1,

-x[1]+2*x[2]-x[3] <= 1,

-x[2]+2*x[3]-x[4]+1 <= 1,

2*x[1]-x[2] <= 1

},

assume = {integer, nonnegative}, maximize)

and we obtain x� = (1; 1; 1; 1). And, L(G; s)tx� + c = (1; 0; 1; 1) is a recurrent con�guration.

Corollary 2.38. Let G be a multigraph, s 2 V (G) and x� an optimal solution of the following integer linear

problem:

maximize jxj

subject to 0 � L(G; s)tx � d(G;s) � 1(5)

x � 0;

then L(G; s)tx� 2 SP (G; s) is the identity of K(G).
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Proof. It follows directly from Theorem 2.36 taking c = 0. �

Example 2.39. We shall compute the identity con�guration of SP (C3(3; 1; 1); v1). The corresponding integer

linear program is:

maximize x1 + x2

subject to [
0

0

]
�

[
4 �3

�3 4

] [
x1
x2

]
�

[
3

3

]
x � 0

We use the following code in Maple:

with(Optimization):

LPSolve( x[1]+x[2],

{

4*x[1]-3*x[2] <= 3,

-3*x[1]+4*x[2] <= 3,

},

assume = {integer, nonnegative}, maximize)

and we obtain x� = (3; 3). And, L(G; s)tx� = (3; 3) is the identity.

Corollary 2.40. Let G be a connected, r -regular multigraph, then r1 is the identity of the sandpile group,

SP (c(G); s).

Proof. The dual linear problem of (2) is given by:

minimize yt(dG ; 0)

subject to
(
L(c(G); s);�L(c(G); s)t

)
y � 1

y � 0:

Since G is a r -regular multigraph, then the vectors xt = r1 and yt = (1; 0) are feasible integral solutions of

the primal and the dual linear problems, respectively, with cost equal to r1 � 1 = r jV (G)j = 1 � dG . By the

weak duality theorem [5, Corollary 4.2], x is an optimal solution of the integer linear problem (2). Therefore, by

Corollary 2.38, r1 = rL(G; s)t1 = L(G; s)tr1 is is the identity of the sandpile group of (c(G); s). �

Corollary 2.41. Let G be a multigraph, s 2 V (G), c a recurrent con�guration of SP (G; s), and (d; x)� an

optimal solution of the following integer linear problem:

minimize d

subject to dc� L(G; s)tx = 0(6)

d � 1; x � 0;

then d is the degree of c in K(G).

Proof. Since c is recurrent, then c = [c] and therefore degK(G)([c]) = minfd j d [c] = [0]g. Thus

degK(G)([c]) = minfd j d [c] = [dc] = [L(G; s)tx] = [0]g = minfd j dc� L(G; s)tx = 0; d � 1; x � 0g:

�
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Example 2.42. We shall compute the degree of the con�guration (1; 0; 1; 1) of SP (C5; v5). The corre-

sponding integer linear program is:

minimize d

subject to 
2 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 2



x1
x2
x3
x4

 =

d

0

d

d


x � 0

d � 0

We use the following code in Maple:

with(Optimization):

LPSolve( d,

{

2*x[1]-x[2] = d,

-x[1]+2*x[2]-x[3] = 0,

-x[2]+2*x[3]-x[4] = d,

-x[3]+2*x[4] = d,

d >= 1,

},

assume = {integer, nonnegative})

and we obtain that x� = (7; 9; 11; 8) and the degree d = 5. Actually, (1; 0; 1; 1) is a generator of SP (C5; v5).

5 Graph Homomorphism and the sandpile group

Let G and H be multigraphs. A full homomorphism of G to H, denoted by f : G ! H, is a mapping

f : V (G)! V (H)

such that f (u)f (v) 2 E(H) if and only if whenever uv 2 E(G).

The de�nitions of full homomorphism and isomorphism are similar, however, the di�erence is that an iso-

morphism is bijective. For example, let C4 and P3 be graphs as in �gure 2.5. The map f : V (C4)! V (P3) such

that v1; v3 7! u1 and v2; v4 7! u2 is a full homomorphism.

v1v3

v2 v4

u1

u2
u3

(a) C4 (b) P3

Figure 2.5. Full homomorphism.

The following proposition give us an equivalent way to de�ne a full homomorphism of graphs:

Proposition 2.43. [27] Let G and H be multigraphs without loops. Then f : G ! H is an (full) homomor-

phism if and only if

i. Sx = f �1(x) is an independent set of G for all x 2 V (H),

ii. if xy < (2) E(H), then uv < (2) E(G) for all u 2 Sx and v 2 Sy .
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Now, we will introduce the new concept of uniform homomorphism, this concept is between the concepts

of homomorphism and full homomorphism.

De�nition 2.44. Let G and H be multigraphs without loops. An uniform homomorphism of G to H, denoted

by f : G ! H, is a mapping f : V (G)! V (H) such that for all x; y 2 V (H) we have that

dG[Sx[Sy ](u) = mx;y for all u 2 Sx [ Sy ;

where Sx = f �1(x) and mx;y = dH[x;y ](x) = dH[x;y ](y).

Example 2.45. Consider the graphs C5 and C3, with V (C5) = fv1; v2; v3; v4; v5g,

E(C5) = fv1v2; v2v3; v3v4; v4v5; v5v1g, V (C3) = fu1; u2; u3g and E(C5) = fu1u2; u2u3; u3u1g. And,

let f : V (C5)! V (C3) such that

v1 7! u1; v2 7! u2; v3 7! u3; v4 7! u2; v5 7! u3;

It is clear that it is an homomorphism. but it is not a full or uniform homomorphism. However, taking C5+v2v5

v1

v2

v5

v4

v3

u1

u2

u3

Figure 2.6. Homomorphism between C5 and C3.

with the same mapping, we obtain a full homomorphism that is not uniform. Finally, considering the same

mapping from C5 + v2v5 to C3 + v2v3, we get a full and uniform homomorphism.

In the following example, we shall show an example of a uniform homomorphism that is not full.

Example 2.46. Let G and H be graphs as in �gure 2.7, with V (G) = fv1; v2; v3; v4; v5; v6; v7; v8; v9g and

V (H) = fu1; u2; u3g. Moreover, let f : V (G)! V (H) be the mapping given by

v1 7! u1; v2 7! u2; v3 7! u3; v4 7! u2; v5 7! u3; v6 7! u2; v7 7! u3:v8 7! u1; v9 7! u1;

v1 v8 v9

v2

v3

v4

v5

v6

v7

u1

u2

u3

(a) G (b) H

Figure 2.7. Uniform homomorphism.

Then f is a uniform homomorphism. Furthermore, we have that it is not a full homomorphism, because

v2v5 is not an edge of C5 as required by theorem 2.43.ii.

Proposition 2.47. [27] Let G and H be multigraphs without loops. Then f : G ! H is an uniform

homomorphism if and only if

� Sx = f �1(x) is an independent set of G for all x 2 V (H),
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� G[Sx [ Sy ] is a mx;y -regular bipartite graph.

Proof. It follows directly from the de�nition of uniform homomorphism. �

The concept of uniform homomorphism of graphs is relevant in the study of the sandpile group of graphs

as shows the following result:

Theorem 2.48. Let G and H be multigraphs and f : G ! H be a surjective uniform homomorphism, then

the induced mapping f̃ : SP (c(H))! SP (c(G)) given by

f̃ (u)v = ux 2 N
V (G) for all v 2 Sx = f �1(x);

is an injective homomorphism of groups, that is, K(c(H)) / K(c(G)).

Proof. It is clear that f induces an injective homomorphism from f̂ : ZjV (c(H))j ! ZjV (c(G))j. If this

homomorphism send recurrent con�guration of SP (c(H)) to recurrent con�guration of SP (c(G)), and if

f̃ (1SP (c(H))) = 1SP (c(G)), then f̂ induces

f̃ : SP (c(H))! SP (c(G))

In order to see this, we shall show the following lemma:

Lemma 2.49. Let c1; c2 be two con�gurations of SP (H; s) such that c2 = c1�bL(H; s) with b 2 N
jSP (c(H);s)j,

that is, the classes are the same. And, let f̃ as in theorem 2.48. If c̃1; c̃2 2 SP (G; s) are the induced

con�gurations of c and c2, respectively, then c̃2 = c̃1 � b̃L(G; s) with f̃ (b) = b̃.

Proof. It is clear that vertex v 2 H is toppled if and only if vertices Sv 2 G are toppled. And G[Sx [ Sy ]

is a mx;y -regular bipartite graph, then when the vertices Sx are toppled, each vertex in Sx loss mx;y , and each

vertex in Sy gains mx;y . Thus, considering all neighbors Sy of Sx , we have the result. �

Then, if c is recurrent, then there exist u such that s(c + u) = c , and by the lemma we have that

s(c̃ + ũ) = c̃ . Proving that c̃ is recurrent. Similarly, we have that s(1SP (c(H)) + 1SP (c(H))) = 1SP (c(H)) implies

s(1SP (c(G)) + 1SP (c(G))) = 1SP (c(G)). �

Example 2.50. Consider C4 with V (C4) = fv1; v2; v3; v4g, E(C4) = fv1v2; v2v3; v3v4; v4v1g and K2(2) with

V (K2(2)) = fx1; x2g, E(K2(2)) = fx1x2; x1x2g. The mapping f : V (C4)! V (K2) given by

f (v1) = x1; f (v2) = x2; f (v3) = x1; f (v4) = x2;

is an uniform homomorphism and the induced map f̃ : SP (c(C4))! SP (c(K2(2))) is given by

f̃ ((2; 0)) = (2; 0; 2; 0); f̃ ((1; 2)) = (1; 2; 1; 2); f̃ ((2; 1)) = (2; 1; 2; 1);

f̃ ((0; 2)) = (0; 2; 0; 2); and f̃ ((2; 2)) = (2; 2; 2; 2):

Corollary 2.51. Let G be a r -regular bipartite graph with bipartition (V1; V2), then

Z2r+1 / K(c(G)):

Proof. Let K2(r) be the multigraph with V = fv1; v2g as set of vertices and m1;2 = r . Since G is a bipartite

r -regular graph, then the mapping f : G ! K2(r), given by

f (v) =

v1 if v 2 V1

v2 if v 2 V2

is a surjective uniform homeomorphism. Therefore, by theorems 2.48 and 2.33 we have that

Z2r+1 = K(c(K2(r))) / K(c(G)):

�
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6 The sandpile group of the cartesian product of graphs

Let G and H be multigraphs, G2H be the cartesian product of G and H and let iG : G ! G2H the canonical

inclusion map given by

iG(v) = (v ; u) for all v 2 V (G);

for some �xed vertex u of H. Let iH : H ! G2H the inclusion map de�ned in a similar way.

Figure 2.8. Cartesian product C52K2 and the image of iC5
.

Thus, is not di�cult to see that the mappings iG and iH are injective homomorphism of graphs, that is,

the image of iG is a subgraph of G2H isomorphic to G. For the rest of this section let sG 2 V (c(G)) n V (G),

sH 2 V (c(H)) n V (H) and sG2H 2 V (c(G2H)) n V (G2H).

Now, let a 2 NV (G) be a con�guration of c(G), b 2 NV (H) be con�gurations of c(H) and let a2b 2 NV (G2H),

the con�guration of c(G2H) given by

(a2b)(u;v) = au + bv for all u 2 V (G) and v 2 V (H):

a

b

a2b
2

1

5

4

3

3

2

6

5

4

4

3

7

6

5

1 2

Figure 2.9. Cartesian product of con�gurations.

As shows the following lemma the cartesian product of con�gurations of c(G) and c(H) is compatible with

the toppling operators of c(G), c(H) and c(G2H).

Lemma 2.52. Let G and H be multigraphs, a 2 NV (G) be a con�guration of c(G) and b 2 NV (H) be

con�gurations of c(H). Then

(i): If a and b are stable con�gurations, then a2b is a stable con�guration of c(G2H),

(i i): If a and b are recurrent con�gurations, then a2b is a recurrent con�guration of c(G2H).

Proof. (i) If a and b are stable con�gurations of c(G) and c(H) respectively, then

au � degc(G)(u)� 1 for all u 2 V (G) and bv � degc(H)(v)� 1 for all v 2 V (H):

Hence a2b(u;v) = au + bv � degc(G)(u) + degc(H)(v) � 2 = degc(G2H)((u; v)) � 1, that is, a2b is a stable

con�guration of c(G2H).

(i i) In order to prove the second part of this lemma we need the following characterization of the recurrent

con�gurations of the cone of a multigraph.

Since 1 = L(c(G); s)t1 is a burning con�guration of c(G) for any multigraph G (de�nition 2.12), then by

theorem 2.13, a is a recurrent con�guration of c(G) if and only if a is stable and there exist an order u1; : : : ; un
of the vertices of V (G) such that if a1 = a+ 1 and

ai = ai�1 � �ui�1 for all i = 2; : : : ; n;
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then ui is a not stable vertex of ai for all i = 1; : : : ; n. Note that a = an � �un .

Claim 2.53. Let a be a recurrent con�guration of c(G), b be a recurrent con�guration c(H), a1 = a + 1,

b1 = b+ 1, and

ai = ai�1 � �ui�1 for all i = 2; : : : ; n; and bi = bi�1 � �vi�1 for all j = 2; : : : ; m;

such that the vertex ui is a not stable in ai for all i = 1; : : : ; n and the vertex vj is a not stable in bj for all

j = 1; : : : ; m. If c = a2b, c(1;1) = a2b+ 1 = a12b = a2b1, and

c(i ;j) =

c(i�1;m) � �(ui�1;vm) if i = 2; : : : ; n and j = 1;

c(i ;j�1) � �(ui ;vj�1) otherwise,

then the vertex (ui ; vj) is a not stable in c(i ;j) for all i = 1; : : : ; n and j = 1; : : : ; m.

Proof. Since the vertex ui is a not stable in ai for all i = 1; : : : ; n and the vertex vj is a not stable in bj for

all j = 1; : : : ; m, then (ai)ui � degc(G)(ui) for all i = 1; : : : ; n and (bj)vj � degc(H)(vj) for all j = 1; : : : ; m.

Now, c(i ;1) = c(1;1) �
∑

1�k�i�1

∑
1�l�m �(uk ;vl ) = (a1 �

∑
1�k�i�1 �uk )2b = ai2b for all i = 1; : : : ; n.

Thus, (c(i ;1))(ui ;v1) = (ai2b)(ui ;v1) = (ai)ui + bv1 = (ai)ui + (b1)v1 � 1 � degc(G)(ui) + degc(H)(v1) � 1 =

degc(G2H)((ui ; v1)) for all i = 1; : : : ; n.

Moreover, since c(i ;j) = ai2b �
∑

1�l�j �(ui ;vl ) = (ai � 1)2b1 �
∑

1�l�j �(ui ;vl ), then (c(i ;j))(ui ;vj ) = (ai)ui +

(bj)vj � 1. Thus,

(c(i ;j))(ui ;vj ) = (ai)ui + (bj)vj � 1 � degc(G)(ui) + degc(H)(vj)� 1 = degc(G2H)((ui ; vj))

for all i = 1; : : : ; n and j = 1; : : : ; m.

Therefore (ui ; vj) is a not stable vertex of c(i ;j) for all i = 1; : : : ; n and j = 1; : : : ; m. �

Finally, using the part (i) and the previous claim we obtain that a2b is recurrent. �

Example 2.54. Let G � H � K2 with V (G) = fu1; u2g and V (H) = fv1; v2g as vertex sets, a = (1; 1) be

a recurrent con�gurations of c(G) and b = (1; 0) be a recurrent con�gurations of c(H). The con�guration

a = (1; 1) is recurrent because a1 = (2; 2) is not stable, a2 = (0; 3) = a1 +�u1 is not stable, and a = a2 +�u2 .

In a similar way, the con�guration b = (1; 0) is recurrent because b1 = (2; 1) is not stable, b2 = (0; 2) = b1+�v1

is nos stable, and b = b2 + �v2 .

Hence c = (2; 1; 2; 1) = (1; 1)2(1; 0) is a recurrent con�guration of c(G2H) because

c(1;1) +�(u1;v1) = c(1;2) +�(u1;v2) = c(2;1) +�(u2;v1) = c(2;2) +�(u2;v2) = c

3 2

23

4 2

30

4 3

01

1 4

02

2 1

12

As shows the next theorem, the mappings iG and iH induces homomorphism of groups between the sandpile

groups of the cones of G and G2H, and H and G2H; respectively.

Theorem 2.55. Let G and H be two multigraphs and e 2 SP (c(H); sH) the identity of the sandpile group

of the cone of H. Then the mapping ĩG : SP (c(G); sG)! SP (c(G2H); sG2H) given by

ĩG(a) = a2e;

is an injective homomorphism of groups.
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Proof. Since e is recurrent, then using lemma 2.52 (i i) we have that ĩG(a) = a2e is a recurrent con�guration

of c(G2H) for all a 2 SP (c(G); sG), that is, the mapping ĩG is well de�ned.

Now, we will prove that ĩG is an homomorphism of groups. Let a;b 2 SP (c(G); sG), then

ĩG(a� b) = (a� b)2e = s(a+ b)2e =L(c(G2H);t) (a+ b)2e = a2e+ b2e =L(c(G2H);t) s(a2e+ b2e)

= a2e� b2e = ĩG(a)� ĩG(b);

and therefore ĩG is an homomorphism of groups.

Finally, since for all a;b 2 SP (c(G); sG) the con�gurations ĩG(a) and ĩG(b) are recurrent, then ĩG(a) = ĩG(b)

if and only if a2e = b2e if and only if a = b and therefore ĩG is an injective homomorphism of groups. �

Example 2.56. Using the CSandPile program with the following instructions:

csandpile c3 -cycle 3

csandpile c3 -group

we obtain the c3.csp �le containing the following

Generator 1: 1 0 S

Checking configuration: 1 0 S

Powers

1 - 1 0 S

2 - 0 1 S

3 - 1 1 S

Generator 2: 0 1 S

Checking configuration: 0 1 S

Powers

1 - 0 1 S

2 - 1 0 S

3 - 1 1 S

Thus, SP (c(K2)) = Z3 is generated by (1; 0) with identity (1; 1).

On the other hand, using the following instruction in CSandPile:

csandpile cC5 -group

with the �le cC5.gph containing the Laplacian matrix of the cone of C5.

6

3 -1 0 0 -1 -1

-1 3 -1 0 0 -1

0 -1 3 -1 0 -1

0 0 -1 3 -1 -1

-1 0 0 -1 3 -1

-1 -1 -1 -1 -1 5

6

we obtain the �le cC5.csp
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Generator 1: 1 0 0 0 0 S

Checking configuration: 2 1 1 1 1 S

Powers

1 - 2 1 1 1 1 S

2 - 0 2 1 1 2 S

3 - 1 2 1 1 2 S

4 - 2 2 1 1 2 S

5 - 2 0 2 2 0 S

6 - 0 1 2 2 1 S

7 - 1 1 2 2 1 S

8 - 2 1 2 2 1 S

9 - 0 2 2 2 2 S

10 - 1 2 2 2 2 S

11 - 2 2 2 2 2 S

Generator 2: 0 1 0 0 0 S

Checking configuration: 1 2 1 1 1 S

Powers

1 - 1 2 1 1 1 S

2 - 2 0 2 1 1 S

3 - 2 1 2 1 1 S

4 - 2 2 2 1 1 S

5 - 0 2 0 2 2 S

6 - 1 0 1 2 2 S

7 - 1 1 1 2 2 S

8 - 1 2 1 2 2 S

9 - 2 0 2 2 2 S

10 - 2 1 2 2 2 S

11 - 2 2 2 2 2 S

...

That is, K(c(C5)) = Z
2
11 is generated by (2; 1; 1; 1; 1) and (1; 2; 1; 1; 1) with identity e = (2; 2; 2; 2; 2) (see [19]).

Finally, using CSandPile we can see that K(c(C52K2)) = Z11�29 � Z3�11�29. Furtermore, using the mapping

iK2
we have that

iK2
(1; 0) = (3; 3; 3; 3; 3; 2; 2; 2; 2; 2)

is a generator of a subgroup of K(c(C52K2)) isomorphic to Z3, and using the mapping iC5
we have that

iC5
(2; 1; 1; 1; 1) = (3; 2; 2; 2; 2; 3; 2; 2; 2; 2) and iC5

(1; 2; 1; 1; 1) = (2; 3; 2; 2; 2; 2; 3; 2; 2; 2)

are generators of subgroups of K(c(C52K2)) isomorphic to Z11,

The last result of this section will be useful in order to calculate in the next section the sand pile group of

the cone of the hypercube.

Lemma 2.57. Let G be a graph with n vertices, then

L(c(K22G); s) =

(
L(c(G); s) + In �In

�In L(c(G); s) + In

)
�

(
In 0

0 L(c(G); s)(L(c(G); s) + 2In)

)
Furthermore, jL(c(K22G); s) + kInj = jL(c(G); s) + kInj � jL(c(G); s) + (k + 2)Inj for all k 2 N.

Proof. First of all, let us simplify L(c(K22G); s) + kIn.

L(c(K22G); s) + kIn =

[
L(c(G); s) + (k + 1)In �In

�In L(c(G); s) + (k + 1)In

]
�

[
L(c(G); s) L(c(G); s)

�In L(c(G); s) + (k + 1)In

]
�

[
In L(c(G); s) + (k + 1)In

�L(c(G); s) L(c(G); s)

]
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�

[
In 0

0 L(c(G); s)(L(c(G); s) + (k + 1)In) + L(c(G); s)

]
=

[
In 0

0 L(c(G); s)(L(c(G); s) + (k + 2)In)

]
At this point, we can conclude the result taking k = 0 and computing the determinant of the last matrix. �

Example 2.58. For instance, the reduced Laplacian matrix of c(K22C5) is:

4 �1 0 0 �1 �1 0 0 0 0

�1 4 �1 0 0 0 �1 0 0 0

0 �1 4 �1 0 0 0 �1 0 0

0 0 �1 4 �1 0 0 0 �1 0

�1 0 0 �1 4 0 0 0 0 �1

�1 0 0 0 0 4 �1 0 0 �1

0 �1 0 0 0 �1 4 �1 0 �1

0 0 �1 0 0 0 �1 4 �1 0

0 0 0 �1 0 0 0 �1 4 �1

0 0 0 0 �1 �1 0 0 �1 4



�



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 26 �10 1 1 �10

0 0 0 0 0 �10 26 �10 1 1

0 0 0 0 0 1 �10 26 �10 1

0 0 0 0 0 1 1 �10 26 �10

0 0 0 0 0 �10 1 1 �10 26


7 The sandpile group of c(Qd)

In this section we present a combinatorial description of the generators of some subgroups of of the sandpile

group of the cone of the hypercube of dimension d .

Let Qd = 2d
i=1
K2 = K22 � � �2K2︸          ︷︷          ︸

d�copies of K2

with vertex set V (Qd) = fva j a 2 f0; 1g
dg and edge set

E(Qd) = ffva; va0g j a; a
0 2 f0; 1gd and a� a0 = �ei for some 1 � i � dg:

Now, for all � 2 f0; 1gd , let Q� = Qd [fva j supp(a) � supp(�)g] an induced subgraph of Qd over the vertices

fva j supp(a) � supp(�)g . Is not di�cult note that.

� Q� � 2
j�j

i=1
K2 = Qj�j, where j�j =

∑d
i=1 �i ,

� Q�0 = Q�[fva j supp(a) � supp(�0)g] for all supp(�0) � supp(�),

� Q� = Q�02Q���0 for all supp(�0) ( supp(�),

� Qd = Q(1;:::;1) = Q�2Q1�� for all � 2 f0; 1gd .

If 0 � r; t � d and r = j�j or t = j�j, then g�(r; t) + (d � j�j)1 2 NV (Qd ) is a recurrent con�gurations of

c(Qd), where g�(r; t) 2 N
V (Qd ) is given by

g�(r; t)a =

r if � � a is even;

t if � � a is odd:

Let �0 , � 2 f0; 1gd such that �0 � � and ĩ�0;� : SP (c(Q�0); s) ! SP (c(Q�); s) the induced map by the

inclusion i�0;� : Q�0 ! Q�02Q���0 .

Theorem 2.59. Let K̃� = fg�(r; t) + (d � j�j)1 j 0 � r; t � d and r = j�j or t = j�jg for all � 2 f0; 1gd .

Then

(i): Z2j�j+1 � K̃� / K(c(Qd)) for all � 2 f0; 1g
d ,

(i i): d1 = g1(d; d) is the identity of K̃� for all � 2 f0; 1gd ,

(i i i): K̃� \ K̃�0 = d1 for all � , �0 2 f0; 1gd ,

(iv): jSP (c(Qj�j); s)j =
∏j�j

i=1
(2i + 1)(

j�j
i ),

(v i): ĩ�;1(SP (c(Q�); s)) \ ĩ�;1(SP (c(Q�0); s)) = ĩ�;1(SP (c(Q���0); s)) for all �0; � 2 f0; 1gd ,

where (a� b)i = ai � bi for all i .
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Proof. Let � 2 f0; 1gd and f� : V (Q�)! V (K2(j�j)) the graph homomorphism given by

f�(a) =

v1 if � � a is even;

v2 if � � a is odd:

Since K̃� = Im(̃i�;1 � f̃�), then using theorems 2.48, 2.55, 2.33 and 2.34 we have that

Z2j�j+1 � K̃� / SP (c(Qd); s) for all � 2 f0; 1g
d

and d1 = g1(d; d) is the identity of K̃�. The part (i i i) of the theorem it follows by inspection.

Applying Lemma 2.57 (ii)

jSP (c(Qj�j); s)j = jL(c(Qj�j); s)j
(ii)
= jL(c(Qj�j�1); s)j � jL(c(Qj�j�1); s) + 2I2j�j�1 j

(ii)
=

j�j�1∏
i=0

jL(c(Q1); s) + 2i I2j
(j�j�1i ) =

j�j�1∏
i=0

[(2i + 3)(2i + 1)](
j�j�1

i )

=

j�j∏
i=1

(2i + 1)(
j�j
i ):

�

Conjecture 2.60. Let d be a natural number, then the sandpile group of the cone of the hypercube c(Qd)

is given by:

K(c(Qd)) �

d⊕
i=1

Z
(di )
2i+1

= Zd3 � Z
(d2)
5 � � � � � Zd2d�1 � Z2d+1:

Furthermore,

SP (c(Qd); s)) =
⊕

�2f0;1gd

K̃�:

Example 2.61. If d = 1, we have that K(c(Q1)) = Z3, SP (c(Q1); s) = f(1; 0); (0; 1); (1; 1)g, (1; 0) and

(0; 1) are generators K(c(Q1)) and (1; 1) is the identity of K(c(Q1)).

If d = 2, we have that K(c(Q2)) = Z
2
3 � Z5, SP (c(Q2); s) is generated by the recurrent con�gurations

f(2; 2; 1; 1); (2; 1; 2; 1); (2; 0; 2; 0)g, and (2; 2; 2; 2) is the recurrent con�guration that plays the role of the

identity in K(c(Q2)). Furthermore,

K̃(1;0) = f(2; 2; 1; 1); (1; 1; 2; 2); (2; 2; 2; 2)g = f(1; 1; 0; 0); (0; 0; 1; 1); (1; 1; 1; 1)g+ (1; 1; 1; 1)

and

K̃(0;1) = f(2; 1; 2; 1); (1; 2; 1; 2); (2; 2; 2; 2)g = f(1; 0; 1; 0); (0; 1; 0; 1); (1; 1; 1; 1)g+ (1; 1; 1; 1)

form two subgroups K(c(Q2)) isomorphics to Z3,

K̃(1;1) = f(2; 0; 2; 0); (1; 2; 1; 2); (2; 1; 2; 1); (0; 2; 0; 2); (2; 2; 2; 2)g

form one subgroups isomorphic to Z5 and K(c(Q2)) = K̃(1;0) � K̃(0;1) � K̃(1;1).



APPENDIX A

CSandPile

This appendix describes the version 0:5 of the program CSandPile, a program that allow to compute the

sandpile group of a multigraph G. The CSandPile program was programmed in C++ language using the GNU

Compiler Collection and had been used over Windows XP, MAC OS 10.5.8 and Ubuntu Linux 9.04.

We developed a computer program called CSandPile, because we want to understand the combinatorial

structure of the recurrent con�gurations of the sandpile group of a multigraph G, an important part of this

thesis. The CSandPile program version 0:5 is mainly a tool for compute the group operations of the recurrent

representatives of non-negative con�gurations of G, that is, is the �rst e�ort to �nd the combinatorial structure

of the group operations of the recurrent con�gurations that generate the sandpile group of G.

If c be a non-negative con�guration, then using CSandPile, one may compute the following:

� the stabilization of c ,

� the recurrent representative of c ,

� the powers of a recurrent con�guration,

� the representative of the inverse of a recurrent con�guration c ,

� the recurrent representative of the identity of the sandpile group of G,

� the determinant of the Laplacian matrix of G,

� the powers of the representative of the canonical base.

1 The structure of CSandPile

Now, we will explain how to use the program CSandPile, it consist of two �les:

� csandpile.cpp the �le with the source code, and

� csandpile.exe the executable �le if you are using a Windows environment, or csandpile.out the

executable �le if you are using a UNIX environment.

Also, you need to have an input �le <my project>.gph with the input data.

1.1 The input �le

The input �le <my project>.gph is structured as follows: The �rst line contains the order of the Laplacian

matrix of G, the next lines contain the rows of the Laplacian matrix of G, the next line contain the vertex of G

that will play the role of the sink, and �nally the last line contain some con�guration.

41
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Example A.1. Let G be the cycle C4 with four vertices, the Laplacian matrix of C4 is given by:

L(C4) =


2 �1 0 �1

�1 2 �1 0

0 �1 2 �1

�1 0 �1 2


The �le called \c4.gph" has the order, the Laplacian matrix of C4, the vertex 4 as a sink and the vector

(2; 2; 1; 0) as the con�guration.

4

2 -1 0 -1

-1 2 -1 0

0 -1 2 -1

-1 0 -1 2

4

2 2 1 0

If we do not write a con�guration, the con�guration �MAX = (deg(1) � 1; deg(2) � 1; :::; deg(n) � 1) will

be taken by default.

1.2 Running CSandPile

The �les csandpile.exe and csandpile.out are the executables �les in Windows and UNIX, respectively. You

must run it from the console of your operating system. The syntax for calling CSandPile is

csandpile <my project> [-option]

where -option can be one of the following options:

-s to obtain the stable configuration

-p to obtain the powers of the recurrent configuration

-i to obtain the identity

-r to obtain the recurrent configuration

-ri to obtain the inverse recurrent configuration

-det to obtain the determinant of the reduced Laplacian matrix

-group to obtain the powers of the standard base

-complete n to create the Laplacian matrix of the complete graph of n

vertices

-path n to create the Laplacian matrix of the path of n vertices

-cycle n to create the Laplacian matrix of the cycle of n vertices

When you type and execute csandpile or ./csandpile.out if you are working in a UNIX environment on

the console, the program creates a �le called <my project>.csp.

For instance, if you wan to obtain the stable con�guration, you need to type

csandpile <my project> -s or ./csandpile.out <my project> -s:

and CSandPile will be create a �le called <my project>.csp. Thus, using \c4.gph" as an input �le, the �le

c4.csp contains the following information:

The stable configuration of

2 2 1 S

is

0 1 1 S

Note that we put a S in the coordinate of the sink.

To obtain the powers of a recurrent con�guration, you need to type -p as an option. Using \c4.gph" as an

input �le, the c4.csp �le contains
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Checking configuration: 0 1 1 S

Powers

1 - 0 1 1 S

2 - 1 1 1 S

3 - 1 1 0 S

4 - 1 0 1 S

To obtain the identity con�guration, you need to type -i as an option. Using \c4.gph" as an input �le, the

c4.csp �le contains

Identity: 1 0 1 S

To obtain the recurrent con�guration of the con�guration given in the <my project>.gph, you need to

type -r as an option. Using \c4.gph" as an input �le, the c4.csp �le contains

The recurrent configuration of 2 2 1 S

is 0 1 1 S

To obtain the recurrent inverse con�guration of the con�guration given in the <my project>.gph, you need

to type -ri as an option. Using \c4.gph" as an input �le, the �le c4.csp contains

Inverse recurrent configuration: 1 1 0 S

To obtain the determinant of the reduced Laplacian matrix, you need to type -det as an option. Using

\c4.gph" as an input �le, the c4.csp �le contains

Determinant: 4

To obtain the powers of the canonical base, you need to type -group as an option. Using \c4.gph" as an

input �le, the c4.csp �le contains

Generator 1: 1 0 0 S

Checking configuration: 0 1 1 S

Powers

1 - 0 1 1 S

2 - 1 1 1 S

3 - 1 1 0 S

4 - 1 0 1 S

Generator 2: 0 1 0 S

Checking configuration: 1 1 1 S

Powers

1 - 1 1 1 S

2 - 1 0 1 S

Generator 3: 0 0 1 S

Checking configuration: 1 1 0 S

Powers

1 - 1 1 0 S

2 - 1 1 1 S

3 - 0 1 1 S

4 - 1 0 1 S

1.3 Some special graphs

Also, CSandPile can generate the Laplacian matrix of the complete graph of n vertices, the path of n vertices

and the cycle of n vertices and write it in the <my project>.gph �le. This can be done by typing -complete

n , -cycle n or -path n as an option, respectively. For instance, if do you write

csandpile k4 -complete 4
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you will obtain the Laplacian matrix of the complete graph of 4 vertices in the k4.gph �le.

4

3 -1 -1 -1

-1 3 -1 -1

-1 -1 3 -1

-1 -1 -1 3

4

Note that by default, CSandPile will de�ne the vertex n as the sink.

2 The source code

The program was coded using C++. We used the libraries

#include <iostream>

#include <fstream>

#include <string.h>

#include <math.h>

#include <stdlib.h>

using namespace std;

In order to write the �le <my project>.csp from any part of the program, we declare the following global

variable:

ofstream fout;

The program has a class called csandpile. The sandpile class has private members:

int *degree;

int *configuration;

int *config;

int **rest;

int **laplacian;

float **inverse;

int m;

and public members:

csandpile(char *);

int wini(int *);

void sum(int, int *);

void top(int *);

void print();

void print(int *);

void print(float *);

void printmatrix(int **, int);

void printmatrix(float **,int);

void stable();

bool areequals(int *, int *);

void recurrent(int *);
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void powerof(int *);

void powerof();

void identity();

void reprec();

void reprecinv();

int cofactor(int **, int);

void determinant();

void group();

2.1 Functions

Now, we will explain how each function works. The csandpile(char *) constructor reads from the <my

project>.gph �le, the order of the Laplacian matrix, the Laplacian matrix, the sink and a con�guration. Then,

the reduced Laplacian matrix is built and the degree of the non sink vertices are stored in the degree variable.

If the �le <my project>.gph does not contain a con�guration, then the program creates one.

csandpile::csandpile(char *name){

char *input file name = new char [(strlen(name)+3)];

strcpy(input file name,name);

strcat(input file name,".gph");

ifstream fin(input file name);

int dim;

fin>>dim;

laplacian = new int*[dim];

for(int i=0; i<dim; i++)

laplacian[i] = new int [dim];

for(int i=0; i<dim; i++)

for(int j=0; j<dim; j++)

fin>>laplacian[i][j];

fin>>sink;

m = dim - 1;

rest = new int*[m];

for(int i=0; i<m; i++)

rest[i] = new int [m];

int flagi=0, flagj=0;

for(int i=0; i<dim; i++)

for(int j=0; j<dim; j++){

if(i!=(sink-1))

if(j!=(sink-1))

rest[i-flagi][j-flagj]=laplacian[i][j];

else

flagj=1;

else

flagi=1;

if(j==(dim-1))

flagj=0;

}
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degree = new int [m];

for(int i=0; i<m; i++)

degree[i] = rest[i][i];

config = new int[dim];

configuration = new int[m];

if(!fin.eof()){

for(int i=0; i<dim; i++)

fin>>config[i];

flagi=0;

for(int i=0; i<dim; i++)

if(i!=sink)

configuration[i-flagi] = config[i];

else

flagi=1;

}

else

for(int i=0; i<m; i++)

configuration[i]=degree[i]-1;

fin.close();

}

2.1.1 The \wini" function

The \wini" function �nds out an index of the vector \tocheck" that is non-stable. Moreover, if the con�gu-

ration is stable, then the function returns �1.

int csandpile::wini(int *tocheck){

for(int i=0; i<m; i++)

if(tocheck[i]>=degree[i])

return i;

return -1;

}

2.1.2 The \sum" function

The \sum" function adds the �k toppling operator to the \tocheck" vector.

void csandpile::sum(int k, int *tocheck){

for(int i=0; i<m; i++)

tocheck[i] -= rest[k][i];

}

2.1.3 The \top" function

The \top" function checks when the \tocheck" vector is stable. Moreover, if \tocheck" is not stable in the

vertex k , then the \top" function adds the k-restriction. The function repeats this process until the \tocheck"

vector is stable.
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void csandpile::top(int *tocheck){

int aux=wini(tocheck);

while(aux!=-1){

sum(aux, tocheck);

aux=wini(tocheck);

}

}

2.1.4 The \print" function

The \print" function prints the \configuration" vector.

void csandpile::print(){

fout<<" ";

for(int i=0; i<m; i++){

if(i==(sink-1))

fout<<"S ";

fout<<configuration[i]<<" ";

}

if(m==(sink-1))

fout<<"S";

fout<<endl;

}

2.1.5 The \print" function

The \print" function prints the \tocheck" vector when it has integer entries.

void csandpile::print(int *tocheck){

fout<<" ";

for(int i=0; i<m; i++){

if(i==(sink-1))

fout<<"S ";

fout<<tocheck[i]<<" ";

}

if(m==(sink-1))

fout<<"S";

fout<<endl;

}

2.1.6 The \print" function

The \print" function prints the \tocheck" vector when it has float entries.
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void csandpile::print(float *tocheck){

fout<<" ";

for(int i=0; i<m; i++){

if(i==(sink-1))

fout<<"S ";

fout<<tocheck[i]<<" ";

}

if(m==(sink-1))

fout<<"S";

fout<<endl;

}

2.1.7 The \printmatrix" function

The \printmatrix" function prints the \matrix" matrix when it has integer entries.

void csandpile::printmatrix(int **matrix, int n){

fout<<endl;

for(int i=0; i<n; i++){

for(int j=0; j<n; j++)

fout<<" "<<matrix[i][j];

fout<<endl;

}

}

2.1.8 The \printmatrix" function

The \printmatrix" function prints the \matrix" matrix when it has float entries.

void csandpile::printmatrix(float **matrix, int n){

fout<<endl;

for(int i=0; i<n; i++){

for(int j=0; j<n; j++)

fout<<" "<<matrix[i][j];

fout<<endl;

}

}

2.1.9 The \stable" function

The \stable" function obtains and prints the stable con�guration of a vector using the \top" function.
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void csandpile::stable(){

int *aux;

aux = new int [m];

for(int i=0; i<m; i++)

aux[i]=configuration[i];

fout<<" The stable configuration of"<<endl;

print(aux);

top(aux);

fout<<endl;

fout<<" is"<<endl;

print(aux);

}

2.1.10 The \areequals" function

The \areequals" function check when the vectors \aux" and \tocheck" are equals.

bool csandpile::areequals(int *aux, int * tocheck){

for(int i=0; i<m; i++)

if(aux[i]!=tocheck[i])

return false;

return true;

}

2.1.11 The \recurrent" function

The \recurrent" function computes the recurrent con�guration of the \tocheck" vector using the following

result:

Proposition A.2. If c is a non-negative con�guration, then the con�guration

s(2�MAX � s(2�MAX) + c)

is recurrent and is in the same equivalence class of c .

Proof. Since 2�MAX � s(2�MAX) 2 h�1; :::;�n; xni, we have that 2�MAX � s(2�MAX) + c and c are in the

same equivalence class. Hence, s(2�MAX � s(2�MAX) + c) is in the equivalence class of c . On the other hand,

s(2�MAX � s(2�MAX) + c) = s(�MAX + �MAX � s(2�MAX) + c)

= s(�MAX + pos)

where pos is a non-negative con�guration. By theorem 2.13 we have that s(�MAX + pos) is recurrent. Thus,

s(2�MAX � s(2�MAX) + c) is recurrent. �
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void csandpile::recurrent(int *tocheck){

int *aux = new int [m];

for(int i=0; i<m; i++)

aux[i] = 2*(degree[i]-1);

top(aux);

for(int i=0; i<m; i++)

aux[i] = 2*(degree[i]-1) - aux[i] + tocheck[i];

top(aux);

for(int i=0; i<m; i++)

tocheck[i] = aux[i];

}

2.1.12 The \powerof" function

The \powerof" function computes the recurrent representative of all the powers of \tocheck" using the

\recurrent" function.

void csandpile::powerof(int * tocheck){

int *aux1, *aux2;

aux1 = new int [m];

aux2 = new int [m];

for(int i=0; i<m; i++)

aux1[i] = tocheck[i];

recurrent(aux1);

for(int i=0; i<m; i++)

aux2[i] = aux1[i];

fout<<" Configuration to check: ";

print(aux1);

fout<<endl;

fout<<" Powers"<<endl;

int j=1;

fout<<j++<<" - ";

print(aux2);

for(int i=0; i<m; i++)

aux2[i] += aux1[i];

top(aux2);

while(!areequals(aux1,aux2)){

fout<<j++<<" - ";

print(aux2);

for(int i=0; i<m; i++)

aux2[i] += aux1[i];

top(aux2);

}

}

2.1.13 The \power" function

The \power" function uses the before \powerof" function in the \configuration" vector.

void csandpile::power(){

powerof(configuration);

}
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2.1.14 The \identity" function

The \identity" function computes the recurrent representative of th identity using the following result:

Proposition A.3. Let �MAX = (deg(1)� 1; :::; deg(n)� 1) then

s(2�MAX � s(2�MAX))

is recurrent and is a representative of the identity of the sandpile group.

Proof. Since 2�MAX � s(2�MAX) 2 h�1; :::;�n; xni, then 2�MAX � s(2�MAX) and (0; :::; 0) are in the same

equivalence class, that is, s(2�MAX � s(2�MAX)) and (0; :::; 0) are in the same equivalence class.

On the other hand,

s(2�MAX � s(2�MAX)) = s(�MAX + �MAX � s(2�MAX))

= s(�MAX + pos);

where pos is a non-negative con�guration. Therefore, by theorem 2.13 s(2�MAX�s(2�MAX)) = s(�MAX+pos)

is recurrent. �

void csandpile::identity(){

int *aux = new int [m];

for(int i=0; i<m; i++)

aux[i] = 2*(degree[i]-1);

top(aux);

for(int i=0; i<m; i++)

aux[i] = 2*(degree[i]-1) - aux[i];

top(aux);

print(aux);

}

2.1.15 The \reprec" function

The \reprec" function computes and prints the recurrent con�guration of the con�guration vector given in the

�le \<my project>.gph".

void csandpile::reprec(){

int *aux = new int[m];

for(int i=0; i<m; i++)

aux[i] = configuration[i];

recurrent(aux);

print(aux);

}

2.1.16 The \reprecinv" function

The \reprecinv" function computes the recurrent representative of the inverse of the con�guration vector

given in the �le \<my project>.gph" using the following result:

Proposition A.4. Let c be a non-negative con�guration, �MAX = (deg(1) � 1; :::; deg(n) � 1), and m =

max1�i�n�1
{⌈

c[i ]
�MAX [i ]

⌉}
+ 2, then

s(m�MAX � s(m�MAX)� c)

is a recurrent representative of �c .



52 Appendix

Proof. Since m�MAX� s(m�MAX) 2 h�1; :::;�n; xni, then m�MAX� s(m�MAX)�c and �c are in the same

equivalence class, that is, s(m�MAX � s(m�MAX)� c) and �c are in the equivalence class.

On the other hand, since m = max1�i�n�1
{⌈

c[i ]
�MAX [i ]

⌉}
+ 2, then (m � 2)�MAX � c and

s(m�MAX � s(m�MAX)� c) = s(�MAX + �MAX � s(2�MAX) + (m � 2)�MAX � c)

= s(�MAX + pos);

where pos is a non-negative con�guration. Finally, by theorem 2.13 s(2�MAX�s(2�MAX)+c) = s(�MAX+pos)

is recurrent. �

void csandpile::reprecinv(){

int *aux = new int [m];

int max=1;

for(int i=0; i<m; i++)

if((degree[i]-1)!=0)

if(max<((int) configuration[i]/(degree[i]-1)+1))

max = (int) configuration[i]/(degree[i]-1)+1;

max = max + 2;

for(int i=0; i<m; i++)

aux[i] = max*(degree[i]-1);

top(aux);

for(int i=0; i<m; i++)

aux[i] = max*(degree[i]-1) - aux[i] - configuration[i];

top(aux);

print(aux);

}

2.1.17 The \cofactor" function

The \cofactor" function computes the cofactor of a n � n matrix.

int csandpile::cofactor(int **matrix, int n){

if(n == 1)

return matrix[0][0];

else if(n == 2)

return (matrix[0][0]*matrix[1][1] - matrix[1][0]*matrix[0][1]);

int sum=0;

int **temp = new int *[n-1];

for(int i=0; i<(n-1); i++)

temp[i] = new int [n-1];

for(int i=0; i<n; i++){

for(int j=1; j<n; j++)

for(int k=0; k<n; k++)

if( k<i )

temp[j-1][k] = matrix[j][k];

else if( k>i )

temp[j-1][k-1] = matrix[j][k];

sum += matrix[0][i]* (int) pow(-1,i)*cofactor(temp,n-1);

}

return sum;

}
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2.1.18 The \determinant" function

The \determinant" function computes the determinant of the reduced Laplacian matrix.

void csandpile::determinant(){

fout<<" Determinant: "<< cofactor(rest,m)<<endl;

}

2.1.19 The \group" function

The \group" function obtains the powers of the canonical base.

void csandpile::group(){

int * generator = new int [m];

for(int i=0; i<m; i++)

generator[i]=0;

for(int i=0; i<m; i++){

generator[i]=1;

int * gaux = new int [m];

for(int j=0; j<m; j++)

gaux[j] = generator[j];

fout<<" Generator "<<(i+1)<<": ";

print(generator);

powerof(gaux);

fout<<endl;

generator[i]=0;

}

}

2.1.20 The \main" function

Finally, we have the code of the \main" function. This function receives 3 parameters, the �rst one is the

number of options and the second one is an array with each of the chosen options.

int main(int argc, char * argv[]){

if(argc == 1){

cout<<"No input file";

}

else if(argc == 2){

csandpile sand(argv[1]);

char *output file name = new char [(strlen(argv[1])+3)];

strcpy(output file name,argv[1]);

strcat(output file name,".csp");

fout.open(output file name, ios::trunc);

fout<<endl<<" Write, after of the executable file, one of the following

options:";

fout<<endl<<endl<<" -s to obtain the stable configuration";
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fout<<endl<<" -p to obtain the powers of the recurrent configuration";

fout<<endl<<" -i to obtain the identity";

fout<<endl<<" -r to obtain the recurrent configuration";

fout<<endl<<" -ri to obtain the inverse recurrent configuration";

fout<<endl<<" -group to obtain the powers of the standard base";

fout<<endl<<" -complete n to create the Laplacian matrix of the

complete graph of n vertices";

fout<<endl<<" -path n to create the Laplacian matrix of the path of n

vertices";

fout<<endl<<" -cycle n to create the Laplacian matrix of the cycle of n

vertices";

fout<<endl<<endl;

fout.close();

}

else if(argc == 3){

csandpile sand(argv[1]);

char *output file name = new char [(strlen(argv[1])+3)];

strcpy(output file name,argv[1]);

strcat(output file name,".csp");

fout.open(output file name, ios::trunc);

if( strcmp( argv[2] , "-s") == 0 )

sand.stable();

else if( strcmp(argv[2] , "-p") == 0 )

sand.powerof();

else if( strcmp(argv[2] , "-i") == 0 ){

fout<<" Identity: ";

sand.identity();

}

else if( strcmp(argv[2] , "-r") == 0 ){

fout<<" The recurrent configuration of ";

sand.print();

fout<<" is";

sand.reprec();

}

else if( strcmp(argv[2] , "-ri") == 0 ){

fout<<" Inverse recurrent configuration: ";

sand.reprecinv();

}

else if( strcmp(argv[2] , "-det") == 0 )

sand.determinant();

else if( strcmp(argv[2] , "-group") == 0 )

sand.group();

else

fout<<"Error: Not recognized command"<<endl;

fout.close();

}

else if(argc == 4)

ofstream foutg;

char *input file name = new char [(strlen(argv[1])+3)];

strcpy(input file name,argv[1]);

strcat(input file name,".gph");
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foutg.open(input file name, ios::trunc);

int dim = atoi(argv[3]);

if( strcmp(argv[2] , "-complete") == 0){

foutg<<dim<<endl;

if(dim>0){

for(int i=0; i<dim; i++){

for(int j=0; j<dim; j++)

if(i==j)

foutg<<(dim-1)<<" ";

else

foutg<<"-1 ";

foutg<<endl;

}

foutg<<dim;

}

}

else if( strcmp(argv[2] , "-path") == 0 ){

foutg<<dim<<endl;

if(dim>0){

for(int i=0; i<dim; i++){

for(int j=0; j<dim; j++)

if(i==j)

if(i==0 || i==dim-1)

foutg<<"1 ";

else

foutg<<"2 ";

else

if(i==(j+1) || i==(j-1))

foutg<<"-1 ";

else

foutg<<"0 ";

foutg<<endl;

}

foutg<<dim;

}

}

else if( strcmp(argv[2] , "-cycle") == 0 ){

foutg<<dim<<endl;

if(dim>0){

for(int i=0; i<dim; i++){

for(int j=0; j<dim; j++)

if(i==j)

foutg<<"2 ";

else

if(i==(j+1) || i==(j-1))

foutg<<"-1 ";

else

foutg<<"0 ";

foutg<<endl;

}

foutg<<dim;
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}

}

else

fout<<"Error: Not recognized command"<<endl;

foutg.close();

}

return 0;

}
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