Distance ideals of graphs 24rd Conference of the ILAS

Carlos A. Alfaro

This work is co-authored with:

Aida Abiad Ghent University Belgium Kristin Heysse Macalester College USA

Libby Taylor Stanford University USA Marcos C. Vargas Banco de México México

Distance matrix of graphs

Definition

Given a connected graph **G** with *n* vertices. The distance matrix D(G) of *G* is the $n \times n$ matrix whose *uv*-entry is the distance $d_G(u, v)$ between the vertices *u* and *v*.

Definition

Given a graph G with vertex set v_0, \ldots, v_{n-1} . Let $D_X(G) = diag(x_0, \ldots, x_{n-1}) - D(G)$, where x_0, \ldots, x_{n-1} are indeterminates.

Definition

Let $\mathcal{R}[X_G]$ denote the polynomial ring over a commutative ring \mathcal{R} in the variables X_G .

Let $\operatorname{minors}_k(D_X(G))$ be the set of determinants (polynomials) of the $k \times k$ submatrices of $D_X(G)$.

For $1 \le k \le n$ the *k*-th distance ideal $D_k^{\mathcal{R}}(G, X_G)$ is the ideal $\langle \operatorname{minors}_k(D(G, X_G)) \rangle$.

An ideal is said to be trivial if it is equal to $\langle 1 \rangle$ (= $\mathcal{R}[X_G]$).

Let $\Phi_{\mathcal{R}}(G)$ be the maximum integer k for which $D_k^{\mathcal{R}}(G, X)$ is trivial.

Example

A Gröbner basis for $D_4^{\mathbb{Z}}(G, X)$ es generated by the following polynomials:

$$\begin{array}{c} x_0+x_3-7, x_1+x_4-7, x_2+x_5-7, x_3x_4-2x_3-2x_4+7, \\ x_3x_5-5x_3-2x_5+7, 3x_3-3x_5, x_4x_5-2x_4-2x_5+7, \\ 3x_4+3x_5-21, 3x_5^2-21x_5+21 \end{array}$$

Note $D_n^{\mathcal{R}}(G,X) = \langle \det(D_X(G)) \rangle$.

Definition

The variety V(I) of an ideal I is the set of common roots between polynomials in I.

Example

Consider the complete graph K_3 with 3 vertices.

 $\begin{aligned} \Phi_{\mathbb{R}}(K_3) &= 1, \\ D_2^{\mathbb{R}}(K_3, X) &= \langle x_0 - 1, x_1 - 1, x_2 - 1 \rangle, \text{ whose } V(D_2^{\mathbb{R}}(K_3, X)) = \{(1, 1, 1)\} \\ I_3^{\mathbb{R}}(K_3, X_{K_3}) &= \langle x_0 x_1 x_2 - x_0 - x_1 - x_2 - 2 \rangle \text{ and } V(I_3^{\mathbb{R}}(K_3, X_{K_3})) \end{aligned}$

Carlos A. Alfaro (Banxico)

We have that

$$\langle 1 \rangle \supseteq D_1^{\mathcal{R}}(G,X) \supseteq \cdots \supseteq D_n^{\mathcal{R}}(G,X) \supseteq \langle 0 \rangle.$$

Then

$$V(\langle 1 \rangle) \subseteq V(D_1^{\mathcal{R}}(G,X)) \subseteq \cdots \subseteq V(D_n^{\mathcal{R}}(G,X)) \subseteq V(\langle 0 \rangle).$$

Some observations

- The varieties of D(G, X) generalize the spectrum of D, D^L y D^Q ,
- By evaluating distance ideals (over $\mathbb{Z}[X]$) at $X = \mathbf{0}$ or X = Tr(G), we can recover the SNF of D, $D^L \vee D^Q$.

Proposition (A. & Taylor, 2020)

Evaluating $D_k^{\mathbb{Z}}(G, X)$

- at $X = \mathbf{0}$, we obtain an ideal generated by $\Delta_k(D(G))$.
- at X = -Tr(G), we obtain an ideal generated by $\Delta_k(D^L(G))$.
- at X = Tr(G), we obtain an ideal generated by $\Delta_k(D^Q(G))$.

Primeras observaciones

Example

$$D_{k}^{\mathbb{Z}}(K_{3},X) = \begin{cases} \langle 1 \rangle & \text{si } k = 1, \\ \langle x_{0} - 1, x_{1} - 1, x_{2} - 1 \rangle & \text{si } k = 2, \\ \langle x_{0} x_{1} x_{2} - x_{0} - x_{1} - x_{2} + 2 \rangle & \text{si } k = 3. \end{cases}$$

Evaluating at X = 0

$$D_i^{\mathbb{Z}}(\mathcal{K}_3, X)|_{X=\mathbf{0}} = \langle \Delta_i(D(\mathcal{K}_3)) \rangle = \begin{cases} \langle 1 \rangle & \text{ si } k = 1, \\ \langle 1 \rangle & \text{ si } k = 2, \\ \langle 2 \rangle & \text{ si } k = 3. \end{cases}$$

then $SNF(D(K_3)) = diag(1,1,2)$.

- Evaluating at X = (-2, -2, -2), then $SNF(D^{L}(G)) = diag(1, 3, 0)$
- Evaluating at X = (2,2,2), then $SNF(D^Q(G)) = diag(1,1,4)$

Codeterminantal graphs

Theorem

Let G and G' be two graphs with n vertices. Then G and G' are isomorphic if and only if there exists a permutation σ on V such that $det(D_X(G)) = det(D_{\sigma X}(\sigma G')).$

Definition

Two graphs G and H are $M_x^{\mathcal{R}}$ -codeterminantal if $I_k^{\mathcal{R}}(M_x(G)) = I_k^{\mathcal{R}}(M_x(H))$ for each $k \in [n]$.

Definition

Two graphs G and H are $M^{\mathcal{R}}$ -codeterminantal if $I_k^{\mathcal{R}}(M(G)) = I_k^{\mathcal{R}}(M(H))$ for each $k \in [n]$.

Codeterminantal graphs

Figure: sp(M) denotes the fraction of graph with *n* vertices having a *M*-coespectral mate. in(M) denotes the fraction of graph with *n* vertices having a *M*-coinvariant mate.

Main references

- C.A. Alfaro & L. Taylor, *Distance ideals of graphs*. Linear Algebra Appl. 584 (2020) 127–144.
- C.A. Alfaro, *On graphs with two trivial distance ideals*. Linear Algebra Appl. 597 (2020) 69–85.
- A. Abiad & C.A. Alfaro, Enumeration of cospectral and coinvariant graphs. Appl. Math. Comput. 408 (2021) 126348.
- A. Abiad, C.A. Alfaro, K. Heysse & M. Vargas, *Codeterminantal* graphs. To appear in Linear Algebra Appl.

Thank you

Carlos A. Alfaro alfaromontufar@gmail.com

