2

\qquad

This work is co-authored with:

Aida Abiad
Ghent University
Belgium

Kristin Heysse
Macalester College
USA

Libby Taylor
Stanford University
USA

Marcos C. Vargas
Banco de México
México

Distance matrix of graphs

Definition

Given a connected graph \mathbf{G} with n vertices. The distance matrix $\mathbf{D}(\mathbf{G})$ of G is the $n \times n$ matrix whose $u v$-entry is the distance $\mathbf{d}_{\mathbf{G}}(\mathbf{u}, \mathbf{v})$ between the vertices u and v.

Example

Distance ideals of graphs

Definition

Given a graph G with vertex set v_{0}, \ldots, v_{n-1}.
Let $D_{X}(G)=\operatorname{diag}\left(x_{0}, \ldots, x_{n-1}\right)-D(G)$, where x_{0}, \ldots, x_{n-1} are indeterminates.

Example

$$
D_{X}(G)=\left[\begin{array}{cccccc}
x_{0} & 1 & 1 & 2 & 1 & 2 \\
1 & x_{1} & 2 & 1 & 1 & 2 \\
1 & 2 & x_{2} & 1 & 2 & 1 \\
2 & 1 & 1 & x_{3} & 2 & 1 \\
1 & 1 & 2 & 2 & x_{4} & 1 \\
2 & 2 & 1 & 1 & 1 & x_{5}
\end{array}\right]
$$

Distance ideals of graphs

Definition

Let $\mathcal{R}\left[X_{G}\right]$ denote the polynomial ring over a commutative ring \mathcal{R} in the variables X_{G}.

Let minors ${ }_{k}\left(D_{X}(G)\right)$ be the set of determinants (polynomials) of the $k \times k$ submatrices of $D_{X}(G)$.

For $1 \leq k \leq n$ the k-th distance ideal $D_{k}^{\mathcal{R}}\left(G, X_{G}\right)$ is the ideal $\left\langle\right.$ minors $\left._{k}\left(D\left(G, X_{G}\right)\right)\right\rangle$.

An ideal is said to be trivial if it is equal to $\langle 1\rangle\left(=\mathcal{R}\left[X_{G}\right]\right)$.
Let $\Phi_{\mathcal{R}}(G)$ be the maximum integer k for which $D_{k}^{\mathcal{R}}(G, X)$ is trivial.

Distance ideals of graphs

Example

G

$$
\left[\begin{array}{cccccc}
x_{0} & 2 & 1 & 1 & 1 & 2 \\
2 & x_{1} & 2 & 1 & 1 & 1 \\
1 & 2 & x_{2} & 2 & 1 & 1 \\
1 & 1 & 2 & x_{3} & 2 & 1 \\
1 & 1 & 1 & 2 & x_{4} & 2 \\
2 & 1 & 1 & 1 & 2 & x_{5}
\end{array}\right]
$$

$\Phi_{\mathbb{Z}}(G)=3$
A Gröbner basis for $D_{4}^{\mathbb{Z}}(G, X)$ es generated by the following polynomials:

$$
\begin{array}{r}
x_{0}+x_{3}-7, x_{1}+x_{4}-7, x_{2}+x_{5}-7, x_{3} x_{4}-2 x_{3}-2 x_{4}+7 \\
x_{3} x_{5}-5 x_{3}-2 x_{5}+7,3 x_{3}-3 x_{5}, x_{4} x_{5}-2 x_{4}-2 x_{5}+7, \\
3 x_{4}+3 x_{5}-21,3 x_{5}^{2}-21 x_{5}+21
\end{array}
$$

Note $D_{n}^{\mathcal{R}}(G, X)=\left\langle\operatorname{det}\left(D_{X}(G)\right)\right\rangle$.

Distance ideals of graphs

Definition

The variety $V(I)$ of an ideal I is the set of common roots between polynomials in I.

Example

Consider the complete graph K_{3} with 3 vertices.
$\Phi_{\mathbb{R}}\left(K_{3}\right)=1$,
$D_{2}^{\mathbb{R}}\left(K_{3}, X\right)=\left\langle x_{0}-1, x_{1}-1, x_{2}-1\right\rangle$, whose $V\left(D_{2}^{\mathbb{R}}\left(K_{3}, X\right)\right)=\{(1,1,1)\}$
$I_{3}^{\mathbb{R}}\left(K_{3}, X_{K_{3}}\right)=\left\langle x_{0} x_{1} x_{2}-x_{0}-x_{1}-x_{2}-2\right\rangle$ and $V\left(I_{3}^{\mathbb{R}}\left(K_{3}, X_{K_{3}}\right)\right)$

Distance ideals of graphs

We have that

$$
\langle 1\rangle \supseteq D_{1}^{\mathcal{R}}(G, X) \supseteq \cdots \supseteq D_{n}^{\mathcal{R}}(G, X) \supseteq\langle 0\rangle
$$

Then

$$
V(\langle 1\rangle) \subseteq V\left(D_{1}^{\mathcal{R}}(G, X)\right) \subseteq \cdots \subseteq V\left(D_{n}^{\mathcal{R}}(G, X)\right) \subseteq V(\langle 0\rangle)
$$

Some observations

- The varieties of $D(G, X)$ generalize the spectrum of D, D^{L} y D^{Q},
- By evaluating distance ideals (over $\mathbb{Z}[X]$) at $X=\mathbf{0}$ or $X=\operatorname{Tr}(G)$, we can recover the SNF of D, D^{L} y D^{Q}.

Proposition (A. \& Taylor, 2020)

Evaluating $D_{k}^{\mathbb{Z}}(G, X)$

- at $X=\mathbf{0}$, we obtain an ideal generated by $\Delta_{k}(D(G))$.
- at $X=-\operatorname{Tr}(G)$, we obtain an ideal generated by $\Delta_{k}\left(D^{L}(G)\right)$.
- at $X=\operatorname{Tr}(G)$, we obtain an ideal generated by $\Delta_{k}\left(D^{Q}(G)\right)$.

Primeras observaciones

Example

$$
D_{k}^{\mathbb{Z}}\left(K_{3}, X\right)= \begin{cases}\langle 1\rangle & \text { si } k=1, \\ \left\langle x_{0}-1, x_{1}-1, x_{2}-1\right\rangle & \text { si } k=2, \\ \left\langle x_{0} x_{1} x_{2}-x_{0}-x_{1}-x_{2}+2\right\rangle & \text { si } k=3 .\end{cases}
$$

- Evaluating at $X=\mathbf{0}$
$\left.D_{i}^{\mathbb{Z}}\left(K_{3}, X\right)\right|_{X=0}=\left\langle\Delta_{i}\left(D\left(K_{3}\right)\right)\right\rangle= \begin{cases}\langle 1\rangle & \text { si } k=1, \\ \langle 1\rangle & \text { si } k=2, \\ \langle 2\rangle & \text { si } k=3 .\end{cases}$ then $\operatorname{SNF}\left(D\left(K_{3}\right)\right)=\operatorname{diag}(1,1,2)$.
- Evaluating at $X=(-2,-2,-2)$, then $\operatorname{SNF}\left(D^{L}(G)\right)=\operatorname{diag}(1,3,0)$
- Evaluating at $X=(2,2,2)$, then $\operatorname{SNF}\left(D^{Q}(G)\right)=\operatorname{diag}(1,1,4)$

Codeterminantal graphs

Theorem

Let G and G^{\prime} be two graphs with n vertices. Then G and G^{\prime} are isomorphic if and only if there exists a permutation σ on V such that $\operatorname{det}\left(D_{X}(G)\right)=\operatorname{det}\left(D_{\sigma X}\left(\sigma G^{\prime}\right)\right)$.

Definition

Two graphs G and H are $M_{x}^{\mathcal{R}}$-codeterminantal if $I_{k}^{\mathcal{R}}\left(M_{x}(G)\right)=I_{k}^{\mathcal{R}}\left(M_{x}(H)\right)$ for each $k \in[n]$.

Definition

Two graphs G and H are $M^{\mathcal{R}}$-codeterminantal if $I_{k}^{\mathcal{R}}(M(G))=I_{k}^{\mathcal{R}}(M(H))$ for each $k \in[n]$.

Codeterminantal graphs

Figure: $s p(M)$ denotes the fraction of graph with n vertices having a M-coespectral mate. in (M) denotes the fraction of graph with n vertices having a M-coinvariant mate.

Main references

- C.A. Alfaro \& L. Taylor, Distance ideals of graphs. Linear Algebra Appl. 584 (2020) 127-144.
- C.A. Alfaro, On graphs with two trivial distance ideals. Linear Algebra Appl. 597 (2020) 69-85.
- A. Abiad \& C.A. Alfaro, Enumeration of cospectral and coinvariant graphs. Appl. Math. Comput. 408 (2021) 126348.
- A. Abiad, C.A. Alfaro, K. Heysse \& M. Vargas, Codeterminantal graphs. To appear in Linear Algebra Appl.

