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Resumen

Esta tesis se divide en dos partes: La primera parte concierne al estudio de los ideales cŕıticos
de una gráfica, y la segunda al análisis estad́ıstico de datos con estructura de árbol.

En esta tesis damos conjuntos de subgráficas prohibidas minimales para Γ≤1, Γ≤2 y Γ≤3. Y
usamos estas gráficas prohibidas para obtener una clasificación de las gráficas en Γ≤1 y en Γ≤2,
además damos una descripción parcial de las gráficas en Γ≤3. Como consecuencia, damos una
clasificación completa para las gráficas cuyo grupo cŕıtico tiene 2 factores invariantes iguales a 1.
Cabe señalar que éste fue una problema que no tuvo respuesta en por lo menos diez años.

Por otro lado, decimos que dos vértices son gemelos si tienen la misma vecindad. De esta forma
tenemos dos tipos de vértices gemelos: los que son adyacentes entre śı y los que no. Esdudiamos los
ideales cŕıticos de una gráfica que tienen vértices gemelos. Espećıficamente, obtenemos relaciones
entre los ideales cŕıticos y sus evaluaciones. Como consecuencia damos una cota superior para
el co-rango algebraico para las gráficas con vértices gemelos. Después usamos esta cota para
caracterizar las gráficas con a lo más 3 ideales cŕıticos y número de cliqué igual a 2 y a 3.

Finalizamos esta parte con los cálculos de los ideales cŕıticos de todas las gráficas simples y
conexas con a los más 9 vértices. Estos cálculos fueron usados en las secciones anteriores; por
ejemplo en el cálculo de las gráficas prohibidas. Además estos datos nos ayudan para conjeturar
nuevos resultados. Y damos un nuevo enfoque a las gráficas co-espectrales al ver el polinomio
caracteŕıstico como una evaluación de los ideales cŕıticos.

La segunda parte de esta tesis concierne al análisis estad́ıstico de datos con estructura de árbol,
la cual es un área nueva de la estad́ıstica con bastas áreas de aplicación. Algunas ideas del Análisis
de Componentes Principales (PCA) han sido desarrolladas previamente para árboles binarios.
Extendemos estas ideas a un espacio más general de árboles ordenados con ráız. Conceptos como
ĺınea-árbol y componente principal hacia delante son redefinidos para este espacio más general.
Además se generaliza un algoritmo que las cálcula en tiempo polinomial. Desarrollaremos una
técnica análoga a la clásica reducción de dimensión en PCA. Para hacer esto, definiremos las
componentes principales hacia atrás, estas componentes son las que llevan menos cantidad de
información sobre los datos. Presentaremos además, un algoritmo que las encuentra. Más aún, la
relación de éstas con las componentes principales hacia delante son investigadas, y la propiedad
de independencia de caminos entre las técnicas hacia delante y hacia atrás es demostrada. Estos
métodos son aplicados a un conjunto de datos de arterias cerebrales de 98 sujetos. Usando estas
técnicas, investigaremos los efectos de envejecimiento de las estructuras de las arterias cerebrales
de mujeres y hombres. Un segundo conjunto de datos de la estructura organizacional de una
compañ́ıa grande en los Estados Unidos es también analizada, y las diferencias estructurales a
través de diferentes tipos de departamantos dentro de la compañ́ıa son explorados.

La investigación hecha en la primera parte de la tesis se ve reflejada en los art́ıculos: [1, 2, 3,
4, 5, 6, 7] de la bibliograf́ıa de la primera parte. Y la de la segunda parte en el art́ıculo [1] y la
patente [2] de la segunda bibliograf́ıa.
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Abstract

This thesis is divided in two parts. The first part is devoted to the study of critical ideals of a
graph, and the second part to the statistical analysis of tree structured data.

In this thesis we provide the sets of minimal forbidden subgraphs for Γ≤1, Γ≤2 and Γ≤3. And
we use these forbidden subgraphs to get a complete classification of the graphs in Γ≤1 and Γ≤2,
and a partial classification of the graphs in Γ≤3. As a consequence we give a complete classification
of the simple graphs whose critical group has two invariant factors equal to one, which was an
unanswered question for at least the last ten years.

We say that two vertices of a graph are twins if they have the same neighbors. There are two
types of twins depending on whether the twins are connected or not. We also study the critical
ideals of a graph having twin vertices. Specifically, we obtain relations between some evaluations
of the critical ideals of a graph G and the critical ideals of G with some vertices arbitrarily cloned.
As a consequence, we get an upper bound for the algebraic co-rank for a graph with twin vertices.
After we use this bound to characterize the graphs with at most three trivial critical ideals and
clique number equal to 2 and 3.

We finish this part with the computation of the critical ideals of the simple connected graphs
with at most 9 vertices. This data was used in previous sections; for instance in the computation
of the forbidden graphs. This data also has help us to conjecture new results. Finally, we give
a new interpretation to the co-spectral graphs by considering the characteristic polynomial as an
evaluation of the critical ideals.

The second part of this thesis concerns to the statistical analysis of tree structured data, which
is a new topic in statistics with wide application areas. Some Principal Component Analysis
(PCA) ideas have been previously developed for binary tree spaces. Here, these ideas are extended
to the more general space of rooted and ordered trees. Concepts such as tree-line and forward
principal component tree-line are redefined for this more general space, and the optimal algorithm
that finds them is generalized. An analog of classical dimension reduction technique in PCA
for tree spaces is developed. To do this, backward principal components, the components that
carry the least amount of information on tree data set, are defined. An optimal algorithm to find
them is presented. Furthermore, the relationship of these to the forward principal components
is investigated, and a path-independence property between the forward and backward techniques
is proven. These methods are applied to a brain artery data set of 98 subjects. Using these
techniques, the effects of aging to the brain artery structure of males and females is investigated.
A second data set of the organization structure of a large US company is also analyzed and the
structural differences across different types of departments within the company are explored.

The research done in the first part is reflected in the articles and preprints: [1, 2, 3, 4, 5, 6, 7]
of the bibliography of the first part. And the second in the article [1] and the patent application
[2] of the second bibliography.
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Le savant n’étudie pas la nature parce que cela est utile; il l’étudie parce qu’il y
prend plaisir et il y prend plaisir parce qu’elle est belle. Si la nature n’était pas
belle, elle ne vaudrait pas la peine d’être connue, la vie ne vaudrait pas la peine
d’être vécue. Je ne parle pas ici, bien entendu, de cette beauté qui frappe les sens,
de la beauté des qualités et des apparences; non que j’en fasse fi, loin de là, mais
elle n’a rien à faire avec la science; je veux parler de cette beauté plus intime qui
vient de l’ordre harmonieux des parties, et qu’une intelligence pure peut saisir

Henri Poincaré

Los cient́ıficos estudian la naturaleza no porque sea útil, sino porque encuentran
placer en ello, y encuentran placer porque es hermosa. Si no lo fuera, no mereceŕıa
la pena conocerla, y si la naturaleza no mereciera la pena, la vida tampoco. No me
refiero, claro está, a la belleza que estimula los sentidos, la de las cualidades y las
apariencias; no es que menosprecie tal belleza, nada más lejos de mi intención,
más ésta nada tiene que ver con la ciencia; me refiero a esa hermosura más
profunda que emana del orden armonioso de las partes, susceptible de ser captada
por una inteligencia pura.

Henri Poincaré
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Part 1

Critical Ideals of a graph





CHAPTER 1

Introduction

In this thesis, graphs allow multiple edges and no loops. The critical group K(G) of a graph
G, also known as sandpile group, is a topic that has been widely developed in the last years.
The interest in studying the critical group is that it is in the intersection of several areas of the
mathematics, physics and computer science. For instance, the critical group had been studied in
[9, 14, 17, 18, 19, 20, 21, 23, 24, 29, 31, 33, 34, 35, 37, 38, 44, 45].

It is known [33, Theorem 1.4] that the critical group of a connected graph G with n vertices
can be described as follows:

K(G) ∼= Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdn−1 ,

where d1, d2, ..., dn−1 are positive integers with di | dj for all i ≤ j. These integers are called
invariant factors of the Laplacian matrix of G. Besides, if ∆i(G) is the greatest common divisor
of the i-minors of the Laplacian matrix L(G) of G, then the i-th invariant factor di is equal to
∆i(G)/∆i−1(G), where ∆0(G) = 1 (for details see [30, Theorem 3.9]).

The computation of the invariant factors of the Laplacian matrix is an important technique
used in the understanding of K(G). For instance, several researchers addressed the question of
how often the critical group is cyclic, that is, if f1(G) denote the number of invariant factors equal
to 1, then the question is how often f1(G) is equal to n− 2 or n− 1. In this way, it is desirable to
understand the combinatorial properties of f1(G) and the family of graphs Gi of simple connected
graphs with f1(G) = i.

Superficially, the critical group has three components: algebraic, combinatorial, and arithmetic.
The methodology of these studies rely on the separation of the combinatorial and algebraic infor-
mation from most of the arithmetic component by means of the introduction of a new invariant:
the critical ideals. Critical ideals were defined in [22] as a generalization of the critical group and
have been studied in [1, 7, 22]. The effect of avoiding the arithmetic information is the behav-
ior of the critical ideals is easier to observe and to describe. Thus critical ideals provide a new
perspective to understand the critical group theory. Until now, the major research in the area
is based in the computation the critical group of small families of graphs, but few deep relations
between the critical group and the combinatorial properties of the graph have been found. The
effect of avoiding most of the arithmetic information is that the patterns of the behavior of the
critical ideals and the graphs are easier to observe and to describe.

In Chapter 2 we explore the definition of algebraic co-rank of a graph, which is the number
of trivial critical ideals associated to the given graph. A crucial result linking critical groups
and critical ideals is [22, Theorem 3.6], which states that if DG is the degree vector of G, and
d1 | · · · | dn−1 are the invariant factors of K(G), then

Ii(G,DG) =

〈
i∏

j=1

dj

〉
= 〈∆i(G)〉 for all 1 ≤ i ≤ n− 1.

3



4 1. INTRODUCTION

Thus if the critical ideal Ii(G,XG) is trivial, then ∆i(G) and di are equal to 1. Equivalently, if
∆i(G) and di are not equal to 1, then the critical ideal Ii(G,XG) is not trivial. The main result of
Chapter 2 is the classification of the graphs with two trivial critical ideals (see Theorems 2.10 and
Theorem 2.11). This result is then employed to fully characterize the graphs with two invariant
factors equal to 1 (see Theorem 2.22). Which was an unsolved problem for at least 10 years. In
turn, we develop new concepts like the algebraic co-rank of a graph, which is the number of trivial
critical ideals associated to the given graph. We finish this chapter with the classification of the
graphs with three trivial critical ideals with clique number at most 3 (see Theorem 2.33).

In Chapter 3, we recall the concepts of duplication and replications of vertices. The purpose of
this chapter is to study of the critical ideals of signed multidigraphs having twin vertices. Several
graph families have twin vertices. For instance, the complete multipartite graphs, the threshold
graphs, the quasi-threshold graphs, or the cographs. Therefore, the description of critical ideals
of graphs with twins is an important step in the development on the theory of critical ideals and
critical group. Here, we will obtain relations between some evaluations of the critical ideals of a
signed multidigraph G and the critical ideals of Gd, where d ∈ PV (G). As a consequence of this
partial description of the critical ideals, we get an upper bound for the algebraic co-rank of graphs
with twins. This upper bound is important for instance in the classification of the graphs that have
algebraic co-rank less than or equal to an integer k (see [2, Section 2]). We will also state three
conjectures which lead into a wide and interesting panorama of the critical ideals. Also, we give
a description of the critical ideals of the k-th duplication dk(G, v) of vertex v and k-th replication
rk(G, v) of vertex v in terms of some of the critical ideals of G.

Chapter 4 aims at discussing some numerical experiments providing information about the
critical ideals of small graphs. Much of this information have being used to conjecture, and some
of it had end up in new mathematical results. These computations also lead into a wide panorama
of the critical ideals.

The first part of this thesis has been written jointly with Carlos Valencia and Hugo Corrales.
Each chapter corresponds to a paper or a preprint.

1. Background

1.1. Laplacian matrix. In this section we introduce the Laplacian matrix, or also called
Kirchhoff’s matrix, of a graph and few basic properties that will be frequently used through this
thesis. Laplacian matrices had been extensively studied in different context in the last 50 years.
A general account of the Laplacian matrices can be found in [10, Chapter 4], [11, Chapter 4], [13]
or [26, Chapter 13].

The Laplacian matrix L(G) of a graph G is the matrix with rows and columns indexed by the
vertices of G, such that the uv-entry is the negative of the number of edges (also called multiplicity)
between the different vertices u and v, and the degree of u otherwise.

The Laplacian matrix is closely related to the adjacency and incidence matrices. Many prop-
erties of the Laplacian matrix are inherited from these matrices. The adjacency matrix A(G) of
a graph G = (V,E) is the matrix with rows and columns indexed by V whose uv-entry is the
multiplicity between the vertices u and v. The degree matrix Deg(G) of a graph G is the diagonal
matrix with rows and columns indexed by V whose uu-entry is the degree of vertex u. Therefore,
L(G) = Deg(G) − A(G). An orientation σ of a graph G is the assignment of a direction of each
edge, i.e., we declare one end of the edge to be the head, and the other end to be the tail. Formally,
if the edge uv is oriented from the tail u to the head v, then σ(u, v) = 1 and σ(v, u) = −1. The
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graph G together with an orientation σ is called an oriented graph and is denoted by Gσ. The
incidence matrix D(Gσ) of an oriented graph Gσ is the {0, 1,−1}-matrix whose rows and columns
are indexed by the vertices and the edges of G, respectively, such that the ue-entry is equal to 1
if the vertex u is the head of the edge e, −1 if u is the tail of e, and 0 otherwise. The incidence
matrix of an orientation is related to the Laplacian in the following way.

Lemma 1.1. [26] If σ is an orientation of the graph G, and D is the incidence matrix of Gσ,
then L(G) = DDT .

Despite that there are many different ways to give an orientation to a graph, many of the
results about oriented graphs are independent of the choice of orientation. An example of this is
the following lemma.

Lemma 1.2. [26] Let G be a graph with n vertices and c components. If σ is an orientation of
G and D is the incidence matrix of Gσ, then the rank of D is equal to n− c.

Since the rank of D = D(Gσ), for an arbitrary orientation σ, is equal to the rank of L(G) =
DDT , then the rank of L(G) is n − c. A direct proof of this lemma can be found in [44, Lemma
3.1].

Lemma 1.3. [26] If G is a graph with n vertices and c components, then the rank of L(G) is
equal to n− c.

We finish this section with the Kirchhoff matrix-tree theorem. This relates the minors of size
n − 1 and spanning trees, however there are more general results. For instance, a result for any
principal minor can be found in [10, Theorem 4.7], and a result for any minor can be found [16].

Definition 1.4. A spanning tree is a graph that is a tree and a spanning subgraph at the same
time.

The number of spanning trees of G is denoted by τ(G). Let L[u, v] be the submatrix of the
matrix L obtained by removing from L the row and column corresponding to the vertices u and
v, respectively. And let L[u] = L[u, u]. The following celebrated result due to Kirchhoff [32] in an
1847 paper concerned with electrical networks.

Theorem 1.5 (Matrix-Tree Theorem). Let G be a graph with Laplacian matrix L. If u is a
vertex of G, then detL[u] = τ(G).

1.2. Critical group. Let assume that G is a connected graph with n vertices: v1, ..., vn. By
considering the Laplacian matrix L(G) as a linear map L(G) : ZV → ZV , the cokernel of L(G) is
the quotient module ZV /ImL(G).

Definition 1.6. The critical group K(G) of G is the torsion part of the cokernel of L(G).

The critical group has been studied intensively on several contexts over the last 30 years. For
example, the group of components [34, 35], the Picard group [9, 14], the Jacobian group [9, 14],
the sandpile group [21], chip-firing game [14, 37], or Laplacian unimodular equivalence [29, 38].

In the rest of this section we present some basic properties of the critical group. The following
theorem implies that the critical group is a finer invariant than the number of spanning trees of a
connected graph G.

Theorem 1.7. [14] If G is a connected graph, then K(G) has order the number τ(G) of
spanning trees of G.
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For example, Cayley’s celebrated formula τ(Kn) = nn−2 is suggestive of the structure of the
critical group for the complete graph Kn, since K(Kn) ' Zn−2

n . On the other hand, since the
number of spanning trees of a planar graph G is equal to that of its dual G∗, it follows that the
sandpile groups of G and G∗ have equal order.

Theorem 1.8. [9, 21] For a planar graph G and any of its duals G∗, the groups K(G) and
K(G∗) are isomorphic.

Also, in [44] it is proved that if for two connected graphs G and H, the graphic matroids M(G)
and M(H) are isomorphic, then K(G) ' K(H).

Recall that a block is a maximal connected subgraph without a cutvertex. Let G1, ..., Gk be
the blocks of a graph G. The following result was noticed by several authors [21, 34, 44].

Proposition 1.9. The group K(G) is isomorphic to K(G1)⊕ · · · ⊕K(Gk).

A classical result (see [30, Section 3.7]) asserts that the reduced Laplacian matrix is equivalent
to a integer diagonal matrix with entries d1, d2, ..., dn−1, where di > 0 and di | dj if i ≤ j. The
integers d1, . . . , dn−1 are unique and are called invariant factors. With this in mind, the critical
group of a connected graph with n vertices can be expressed in terms of the invariant factors as
follows [33, Theorem 1.4]:

K(G) ∼= Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdn−1 .

Definition 1.10. For every integer k, let fk(G) be the number of invariant factors of the
Laplacian matrix of G equal to k.

Definition 1.11. Let Gi = {G : G is a simple connected graph with f1(G) = i}.

The study of the graphs in Gi is of great interest. In particular, some results and conjectures
for the graphs concerning cyclic critical group can be found in [35, Section 4] and [44, Conjectures
4.3 and 4.4]. An interesting result proved in [19] is that for any given connected simple graph,
there is a homeomorphic graph with cyclic critical group. In [29] was noticed that if G is a graph
of diameter d, then f1(G) ≥ d. Also, if H = G − e, then |f1(G) − f1(H)| ≤ 1. Besides, it is easy
to see [21, 34, 38] that G1 consists only of the complete graphs. In this sense, several researchers
[37] expressed interest on the characterization of G2 and G3. The advances in this matter are the
following. For instance, in [40] it was characterized the graphs in G2 whose third invariant factor
is equal to n, n − 1, n − 2, or n − 3. In [17], the characterizations of the graphs in G2 with a
cutvertex, and the graphs in G2 whose number of independent cycles equals n− 2 are given.

1.3. The Sandpile group. A vertex s ∈ V will be distinguished and called sink . The non-
sink vertex set is denoted by Ṽ . And N denote the non-negative integers.

1.3.1. Stable configurations. Let G = (V,E) be a graph with vertices V = {v1, ..., vn = s}. A
configuration of (G, s) is an element c ∈ Nn. A non-sink vertex v is called stable with respect to c
if degG(v) > cv, and unstable otherwise. A configuration is called stable if every non-sink vertex
v ∈ Ṽ is stable. For instance, in Figure 1.a the vertices v1 and v2 are stable and the rest are
unstable.

Let c be a configuration such that the vertex vi is unstable. The toppling operation (or firing) is
performed on a vertex vi by decreasing ci by the degree of vi, and adding to the entry cj (associated
to vertex vj adjacent with vi) the multiplicity mvi,vj . Note that toppling vi is done by subtracting
the column vector vi of the Laplacian matrix of G to the configuration c. Let L(G)i denote the
i-th column of the Laplacian matrix.
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Lemma 1.12. Let u and v be different vertices of a graph G. If u and v are unstable in a
configuration c, then the same configuration results as firing u then v as firing v then u.

Proof. First note that the vertices u and v can be fired in either order, since firing u cannot
make v stable and vice-versa. The rest follows from the commutativity of vector subtraction

h− L(G)i − L(G)j = h− L(G)j − L(G)i.

�

A sequence of vertex firing is valid if at each step only unstable vertices are fired. A general
consequence of the previous lemma asserts that starting from a given configuration, any two valid
sequences of vertex firings that finish in the same configuration are a rearrangement of each other.

Proposition 1.13. [41] From configuration h, let vi1 , ..., vim ∈ Ṽ and vj1 , ..., vjn ∈ Ṽ be valid
sequences of fired vertices, resulting in the configurations h′ and h′′, respectively.

(1) If h′′ is stable, then m ≤ n, and no vertex appears more times in vi1 , ..., vim than in
vj1 , ..., vjn.

(2) If h′ and h′′ are both stable, then m = n, h′ = h′′, and the sequences are rearrangements
of each other.

The following example shows how a stable configuration is reached from an unstable configu-
ration by toppling the unstable vertices.

Example 1.14. The Laplacian matrix of the cycle with 5 vertices is

L(C5) =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2


Consider the configuration c = (1, 0, 2, 2, 2). By subtracting the third row of L(C5), the configura-
tion (1, 1, 0, 3, 2) is obtained. And by subtracting it the fourth row of L(C5), the stable configuration
(1, 1, 1, 1, 3) is obtained. See Figure 1.

2 v3

2

v4

2s

1
v1

0
v2

0

3

2

1 1

1

1

3

1 1

(a) (b) (c)

Figure 1. (a) An unstable configuration in C5. (b) A new configuration obtained
by toppling vertex v3. (c) A stable configuration obtained by toppling vertex v4.
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For any configuration, a unique stable configuration is obtained by a finite sequence of topplings.
The stable configuration obtained from c is denoted by s(c). Thus, s(c) = c− L(G)tb for a vector
b ∈ Nn.

Proposition 1.15. For any non-zero configuration c, there exists a unique stable configuration
s(c) obtained by toppling the unstable vertices.

Proof. Existence. Let Vk = {v ∈ V (G) | dG(vn, v) = k}, where dG(u, v) denotes the distance
between u and v. Let d be the greatest distance from the sink vn. To any configuration c we
associate the (d+ 1)-tuple µ(c) = (µ0(c), µ1(c), ..., µd(c)) given by

µi(c) =
∑
v∈Vi

cv.

We consider the following lexicographic order ≺ on these d-tuples:

µ(c) ≺ µ(c′) ⇔ exists 0 ≤ k ≤ d, such that

µ0(c) = µ0(c′), ..., µk−1(c) = µk−1(c′), µk(c) < µk(c
′).

Since the sum of the entries of the i-th row of the Laplacian matrix is equal to zero, then if u, v ∈ Nn

with u = v+L(G)tb we have that |u| =
∑d

i=0 µ(u)i is equal to |v| =
∑d

i=0 µ(v)i. Hence, there exists
a finite number of configurations with the same entries sum. Thus, there exists a finite ascending
chain for ≺ with the same entries sum.

Uniqueness. It is consequence of the commutativity of the toppling operator; (u − L(G)i) −
L(G)j = (u− L(G)j)− L(G)i. �

1.3.2. Recurrent configurations. In this section, we define a special set of configurations which
have the property of being an abelian group.

The sum of two configurations c, c′ in (G, s) is taken entry-by-entry. That is, c + c′ := (c1 +
c′1, ..., cn + c′n).

Proposition 1.16. If c and d are configurations in (G, s), then s(c+ d) = s(s(c) + s(d)).

Proof. Since s(c) = c′ and s(d) = d′, then there exist a, b ∈ Nn such that c′ = c− aL(G) and
d′ = d− bL(G) are stable configurations. Thus, c′ + d′ = c+ d− (a+ b)L(G). Since c′ + d′ is not
necessary an stable configuration, then we have that s(u+ v) = s(c′ + d′). �

Since we cannot topple the sink vn, then we say that two configurations c and c′ are equivalent
if cv = c′v for all non-sink vertices v ∈ Ṽ . Thus most of the time we omit the value of the sink in

the configuration. The support of a configuration c is the set supp(c) = {v ∈ Ṽ | cv 6= 0}.

Remark 1.17. Let σmax = (dG(v1))− 1, ..., dG(vn)− 1), and δ = σmax + 1. Then

i. σmax is stable.
ii. δ is unstable.

iii. (δ − s(δ))i > 0 for all 1 ≤ i ≤ n− 1.
iv. δ − s(δ) = L(G)b for a vector b ∈ Nn.

Definition 1.18. The configuration c is recurrent if there exists a non-zero configuration d
such that s(c+ d) = c.
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It is easy to see that the configuration (1, 1, 1, 1) in C5 with v5 as sink is a recurrent configu-
ration. One may think that if we take any unstable configuration the stabilization will produce a
recurrent configuration. However, this is not true in general, for instance consider the following
example.

Example 1.19. Consider the configuration (0, 1, 0) in C4 with v4 as sink. It is the stabilization
of the non-stable configuration (2, 0, 0). However it is not recurrent.

There exist several other definitions of recurrent configuration. In the following we show that
in fact they are equivalent.

Definition 1.20. A configuration β ≥ 1 of (G, s) is called a burning configuration if

• β = ztL(G, s) for some z ∈ ZV (G)\s,
• for all v ∈ V (G) \ s, there exists a path to v from some vertex of supp(β).

Theorem 1.21. [43] Let β be a burning configuration of (G, s), then a configuration c ∈ NV (G)\s

of (G, s) is recurrent if and only if

s(c + β) = c with firing vector equal to βtL(G, s)−1.

Theorem 1.22. [43] There exists a unique burning configuration βmin such that

βtminL(G, s)−1 ≤ β
′tL(G, s)−1 for all β

′
a burning configuration.

Moreover, βtminL(G, s)−1 ≥ 1 with equality if and only if G has no vertex v ∈ V (G) \ s with
deg+

G(v) < deg−G(v).

Theorem 1.23. The following statements are equivalent:

i. [18] For all v ∈ NṼ there exists ω ∈ NṼ such that s(v + ω) = c.
ii. [43] There exists a configuration e such that s(σmax + e) = c.

iii. [21] There exists ω ∈ NṼ such that s(c+ ω) = c.
iv. c is stable and c+ L(G)x is not stable, for all x 6= 0 ∈ NV .
v. s(c+ β) = c.

Proof.

i⇒ ii) Taking v = σmax we have that there exists a configuration ω = e such that s(σmax+e) = c.
ii⇒ i) We have two cases: either v ≤ σmax or v > σmax. If v ≤ σmax, we finish. Suppose

that v > σmax. Then s(v) ≤ σmax, and σmax = s(v) + r. Finally, taking ω = r + e,
s(v + ω) = s(s(v) + (r + e)) = s((s(v) + r) + e) = s(σmax + e) = c.

ii⇒ iii) Clearly, c is stable, then c ≤ σmax. Thus σmax = c+r and s(c+(r+e)) = s(σmax+e) = c.
iii⇒ iv) Suppose there exists x 6= 0 ∈ NV such that c+ L(G)x is stable. Then s(c+ ω) = c and

s(c+ L(G)x+ ω) = s(s(c+ ω) + L(G)x) = s(c+ L(G)x) = c+ L(G)x.

Thus c+ xL(G, s) is recurrent. That is, there exist two different recurrent configurations
in the same class of equivalence. Contradicting Proposition 1.15.

iv ⇒ ii) We have that c is stable and c+ L(G, s)x is not stable, for all x 6= 0 ∈ NV . In particular,
take x such that c + L(G)s ≥ σmax. Since s(c + L(G)sx) exists, there is a sequence of
topplings i1, ..., ik that carries c + L(G)sx to s(c + L(G)sx). Let y = ei1 + · · · + eik , thus
c+ L(G)(x− y) = s(c+ L(G)x). There is no j such that (x− y)j > 0, because it means
that there is a vertex unstable. So (x − y)j < 0 for each 1 ≤ j ≤ k. If x − y 6= 0
then s(c + L(G)x) < c which contradicts Proposition 1.13. Therefore, (x − y) = 0 and
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s(c + L(G)x) = c. Now, since c + L(G)sx ≥ σmax, there exists r such that σmax + r =
c+ L(G)x. And thus s(σmax + r) = s(c+ L(G)x) = c.

v ⇒ iii) It follows by taking ω = β.
iii⇒ v) Theorem 1.21.

�

The sandpile monoid M is defined as the set of stable configurations under the operation of
point-wise addition and stabilization. We denote this operation by ⊕. Let Iσmax be the ideal
generated by σmax, and let Imin be the unique minimal ideal. The ideal Iσmax is precisely the set
of configurations that satisfies (ii) in the theorem above.

Proposition 1.24. Iσmax = Imin.

Proof. It is clear that Imin ⊆ Iσmax . On the other hand, σmax ∈ Imin because if h ∈ Imin ⊂M
there exists a stable configuration h′ such that h+h′ = σmax. Which implies that σmax = h′⊕h ∈
Imin. Then, Iσmax ⊆ Imin. �

Definition 1.25. A recurrent configuration c is minimal if there is no recurrent configuration

c′ 6= c such that c′v ≤ cv for all v ∈ Ṽ .

Proposition 1.26. If c is a recurrent configuration, then there exists a minimal recurrent
configuration cmin such that cmin ≤ c ≤ σmax. Moreover, every configuration c between cmin and
σmax is recurrent.

Proposition 1.27. [21] The minimal recurrent configurations of the complete graph Kn with
n vertices are permutations of (n− 2, ..., 1, 0).

Given a configuration c, we define its level as

level(c) =
∑
v∈Ṽ

cv

Theorem 1.28. [37] Let G be a graph with sink vertex s and c a recurrent configuration, then

|E(G)| − degG(s) ≤ level(c) ≤ 2|E(G)| − degG(s)− |V (G)|+ 1.

For i ≥ 0, we take ai as the number of recurrent configurations with level i+ |E(G)|− degG(s).
We now take the generating function of the recurrent configurations, that is, the polynomial

Ps(G; y) =

|E(G)|−|V (G)|+1∑
i=0

aiy
i

Theorem 1.29. [37] For a graph G and sink vertex s, we have that the generating function of
the recurrent configurations is the Tutte polynomial of G along the line x = 1, that is,

Ps(G; y) = T (G; 1, y)

Example 1.30. Consider the complete graph K4 with 4 vertices and sink vertex s. There are
16 recurrent configurations (see Figure 2) and the Tutte polynomial of G along the line x = 1 is

P (K4; y) = 6 + 6y + 3y2 + y3.
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level 3 level 4

level 5 level 6

Figure 2. Recurrent configurations of K4 represented in R3. There are 6 recurrent
configurations with level 3, 6 with level 4, 3 with level 5, and 1 with level 5.

1.4. Sandpile group.

Definition 1.31. The sandpile group of G is the set of recurrent configurations and is denoted
by SP (G, s).

Now we describe the sandpile group of the cycle.

Proposition 1.32. The sandpile group of the cycle is composed of the following elements: 1,

1− evi for vi ∈ Ṽ .

Let us define u⊕ v := s(u+ v). So we will see that the sandpile group with the operation ⊕ is
effectively a group.

Lemma 1.33. Let δ be as in Remark 1.17, and ε = 2δ−2s(δ). If u is recurrent, then s(u+ε) = u.

Proof. Let u be a recurrent configuration. Hence, there exists a configuration v such that
s(u+ v) = u. Then, applying several times Remark 1.16, we have

s(u+ v + ε) = s(u+ v + 2δ − 2s(δ)) = s(u+ v + 2s(δ)− 2s(δ))

= s(u+ v) = u.

On the other hand,

s(u+ v + ε) = s(u+ ε).

�

Proposition 1.34. For every configuration u, there exists a unique recurrent configuration v
such that u− v ∈ 〈L(G)1, ..., L(G)n−1〉.
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Proof. Existence. Let u be a configuration. Since (δ − s(δ))i > 0, we can find k > 0 such
that u + k(δ − s(δ)) > σmax. Now, let v = s(u + k(δ − s(δ))). Hence, v is stable. And, since
u+k(δ−s(δ)) > σmax, then there exists a configuration c such that u+k(δ−s(δ)) > σmax = v+c.
Therefore, v is recurrent.

Uniqueness. Let u and v be two recurrent configurations such that u−v ∈ 〈L(G)1, ..., L(G)n−1〉.
Then, u− v =

∑n−1
i=1 c1L(G)i. Take I = {i | ci < 0} and J = {i | ci ≥ 0}, and define

β = u+
∑
i∈I

(−ci)L(G)i = v +
∑
i∈J

ciL(G)i.

Let k = maxv∈Ṽ {| cv | dv}, and τ = β + kε. Hence

τ = β + kε = u+
∑
i∈I

(−ci)L(G)i + kε

Since τv ≥ −cvdv, we can topple −cv times each vertex of τ . Then,

s(τ) = s(u+ kε) = s(u+ ε) = u

On the other hand,

τ = β + kε = v +
∑
i∈J

(ci)L(G)i + kε

Since τv ≥ cvdv, we can topple cv times each vertex of τ . Then,

s(τ) = s(v + kε) = s(v + ε) = v

Thus, by Proposition 1.15, we have that u = v. �

Thus, each element in Zn−1/ 〈L(G)1, ..., L(G)n−1〉 is represented by a unique recurrent con-
figuration. Since Zn−1/ 〈L(G)1, ..., L(G)n−1〉 is an abelian group, then it remains to prove that
SP (G, s) is closed under the operation ⊕.

Theorem 1.35. Let G be a multigraph with distinguished vertex s. Then the sandpile group
SP (G, s) is an abelian group.

Proof. It only remains to prove that SP (G, s) is closed under ⊕. Let u, v ∈ SP (G, s), then
u, v are recurrent. Thus, there exist u′ and v′ such that s(u + u′) = u and s(v + v′) = v. Now,
s(u+ u′+ v+ v′) = s(u+ v) and s(u+ v+ u′+ v′) = s(s(u+ v) + u′+ v′). Hence, s(u+ v) = u⊕ v
is recurrent. And, it turns out that u⊕ v ∈ SP (G, s). �

In fact Theorem 1.35 proves that SP (G, s) ∼= Zn−1/L(G, s), where L(G, s) is the reduced
Laplacian with respect to s.

Another important result is that the sandpile group does not depend on the sink vertex, that
is, SP (G, u) ∼= SP (G, v) for u 6= v ∈ V (G).

Theorem 1.36. Let G = (V,E) be a graph. The sandpile group of G is independent of the
sink.
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Proof. Let P be the identity matrix such that the k-th row is interchanged to the n-th row.
Since P−1 = P , we know that

L(G, vn) =


d1 −m1,2 · · · m1,n−1 −m1,n

−m2,1 d2 · · · m2,n−1 −m2,n
...

...
. . .

...
...

−mn−1,1 −mn−1,2 · · · dn−1 −mn−1,n

−mn,1 −mn,2 · · · −mn,n−1 dn

 .

Now, we have the following product

P · L(G, vn) · P =



d1 −m1,2 · · · m1,n · · · −m1,k

−m2,1 d2 · · · m2,n · · · −m2,k
...

...
. . .

...
...

...
−mn,1 −mn,2 · · · dn · · · −mn,k

...
...

...
...

. . .
...

−mk,1 −mk,2 · · · −mk,n−1 · · · dk


= L(G, vk).

Thus both matrices are equivalent and the result follows. �

1.5. Integer linear programming and the sandpile group. In this section we will see how
to use integer linear programming to compute the recurrent configurations of a stable configuration,
the identity of the sandpile group, and the degree of a recurrent configuration.

Let G be a multigraph with vertex set V (G) = {v1, . . . , vn, s}, and degree vector d(G,s) =
(dG(v1), ..., dG(vn)).

Theorem 1.37. Let G be a multigraph with sink s ∈ V (G). Let c be a stable configuration of
(G, s) and x∗ be an optimal solution of the following integer linear problem:

maximize |x|
subject to 0 ≤ L(G, s)tx + c ≤ d(G,s) − 1(1)

x ≥ 0,

then L(G, s)tx∗ + c ∈ SP (G, s) and [c] = [L(G, s)tx∗ + c].

Proof. Let x∗ be an optimal solution of the integer linear program (1). Clearly, r = L(G, s)tx∗+
c is a stable configuration of (G, s) and [c] = [r] in K(G). Therefore, it remains to prove that r
is a recurrent configuration of (G, s). Let βmin be the burning configuration as in Theorem 1.22,
then Theorem 1.21 implies that r is a recurrent configuration of (G, s) if and only if s(r+βmin) = r
with firing vector equal to βminL(G, s)−1. If we assume that r is not a recurrent configuration of
(G, s), then there exists b ∈ NV (G)\s such that 0 ≤ b < βminL(G, s)−1, and r + βmin − btL(G, s)
is an stable configuration of (G, s). Since r + βmin − btL(G, s) = c + (x∗ + z− b)tL(G, s), where
z = βminL(G, s)−1 and z− b > 0, then x′ = x∗ + z− b is a feasible solution of the integer linear
program (1) with x∗ < x′; a contradiction to the optimality of x∗. �
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Example 1.38. Let c = (0, 0, 1, 0) be a configuration in (C5, v5). The corresponding integer
linear program is:

maximize x1 + x2 + x3 + x4

subject to 
0
0
0
0

 ≤


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2



x1

x2

x3

x4

+


0
0
1
0

 ≤


1
1
1
1


x ≥ 0

By using the following code in Maple we obtain x∗ = (1, 1, 1, 1), and L(G, s)tx∗ + c = (1, 0, 1, 1) is
a recurrent configuration.

with(Optimization):

LPSolve( x[1]+x[2]+x[3]+x[4],

{
-x[3]+2*x[4] <= 1,

-x[1]+2*x[2]-x[3] <= 1,

-x[2]+2*x[3]-x[4]+1 <= 1,

2*x[1]-x[2] <= 1

},
assume = {integer, nonnegative}, maximize)

Corollary 1.39. Let G be a multigraph with sink vertex s ∈ V (G). Let x∗ be an optimal
solution of the following integer linear problem:

maximize |x|
subject to 0 ≤ L(G, s)tx ≤ d(G,s) − 1(2)

x ≥ 0,

then L(G, s)tx∗ ∈ SP (G, s) is the identity of K(G).

Proof. It follows from Theorem 1.37 by taking c = 0. �

Example 1.40. Now we compute the identity configuration of SP (C3(3, 1, 1), v1). The corre-
sponding integer linear program is:

maximize x1 + x2

subject to [
0
0

]
≤
[

4 −3
−3 4

] [
x1

x2

]
≤
[

3
3

]
x ≥ 0

We use the following code in Maple to obtain x∗ = (3, 3), and L(G, s)tx∗ = (3, 3) is the identity.
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with(Optimization):

LPSolve( x[1]+x[2],

{
4*x[1]-3*x[2] <= 3,

-3*x[1]+4*x[2] <= 3,

},
assume = {integer, nonnegative}, maximize)

Corollary 1.41. Let G be a connected, r-regular multigraph, then r1 is the identity of
SP (c(G), s).

Proof. The dual linear problem of (2) is given by:

minimize yt(dG,0)

subject to
(
L(c(G), s),−L(c(G), s)t

)
y ≥ 1

y ≥ 0.

Since G is a r-regular multigraph, then the vectors xt = r1 and yt = (1,0) are feasible integral
solutions of the primal and the dual linear problems, respectively, with cost equal to r1 · 1 =
r|V (G)| = 1 · dG. By the weak duality theorem [12, Corollary 4.2], the vector x is an optimal
solution of the integer linear problem (2). Therefore, by Corollary 1.39, r1 = rL(G, s)t1 =
L(G, s)tr1 is is the identity of the sandpile group of (c(G), s). �

Corollary 1.42. Let G be a multigraph, s ∈ V (G), c be a recurrent configuration of SP (G, s),
and (d,x)∗ be an optimal solution of the following integer linear problem:

minimize d

subject to dc− L(G, s)tx = 0(3)

d ≥ 1,x ≥ 0,

then d is the degree of c in K(G).

Proof. Since c is recurrent, then c = [c]. And degK(G)([c]) = min{d | d[c] = [0]}. Thus

degK(G)([c]) = min{d | d[c] = [dc] = [L(G, s)tx] = [0]} = min{d | dc−L(G, s)tx = 0, d ≥ 1,x ≥ 0}.
�

Example 1.43. Now we compute the degree of the configuration (1, 0, 1, 1) of SP (C5, v5). The
corresponding integer linear program is:

minimize d

subject to 
2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2



x1

x2

x3

x4

 =


d
0
d
d


x ≥ 0

d ≥ 0

We use the following code in Maple:
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with(Optimization):

LPSolve( d,

{
2*x[1]-x[2] = d,

-x[1]+2*x[2]-x[3] = 0,

-x[2]+2*x[3]-x[4] = d,

-x[3]+2*x[4] = d,

d >= 1,

},
assume = {integer, nonnegative})

Thus we obtain that x∗ = (7, 9, 11, 8) and the degree d = 5. In fact, (1, 0, 1, 1) is a generator of
SP (C5, v5).



CHAPTER 2

The critical ideals

The main goals of this chapter is to introduce and to study the critical ideals. We begin by
recalling some basic concepts on graph theory in Section 1. Later we establish basic properties of
critical ideals in Section 2. In Section 3, we will characterize the graphs with at most two trivial
critical ideals by finding their minimal set of forbidden graphs. As consequence, we will get the
characterization of the graphs with two invariant factors equal to one. And in Section 4 we will
give two infinite families of forbidden graphs for Γ≤i. In Sections 5 and 6, we will provide a set of
minimal forbidden graphs for the set of graphs with at most three trivial critical ideals. Then we
use these forbidden graphs to characterize the graphs with at most three trivial critical ideals and
clique number equal to 2 and 3.

1. Preliminary definitions on graphs and matrices

Given a graph G = (V,E) and a subset U of V , the subgraph of G induced by U is denoted
by G[U ]. If u is a vertex of G, let NG(u) be the set of neighbors of u in G. A maximum clique of
a graph G is a maximum complete subgraph, whose order is the clique number ω(G) of G. The
path with n vertices is denoted by Pn, a matching with k edges by Mk, the complete graph with
n vertices by Kn and the trivial graph of n vertices by Tn. The cone of a graph G is the graph
obtained from G by adding a new vertex, called apex, which is adjacent with each vertex of G.
The cone of a graph G is denoted by c(G). Thus, the star Sk of k + 1 vertices is equal to c(Tk).
Given two graphs G = (VG, EG) and H = (VH , EH), the union of G and H is the union of their
vertex and edge sets. And it is denoted by G ∪H. When VG and VH are disjoint, their union is
referred as the disjoint union by G+H. Thus the (disjoint) union of n copies of G is denoted by
nG. The join of G and H, denoted by G∨H, is the graph obtained from G+H by adding all the
edges between vertices of G and H. For m,n, o ≥ 1, let Km,n,o be the complete tripartite graph.
The reader can consult [25] for any unexplained concept of graph theory.

Let M ∈ Mn(Z) be a n × n matrix with entries on Z, I = {i1, . . . , ir} ⊆ {1, . . . , n}, and
J = {j1, . . . , js} ⊆ {1, . . . , n}. The submatrix of M obtained by rows i1, . . . , ir and columns
j1, . . . , js is denoted by M [I;J ]. If |I| = |J | = r, then M [I;J ] is called r-square submatrix or
square submatrix of size r of M . A r-minor is the determinant of a r-square submatrix. The set
of i-minors of a matrix M will be denoted by minorsi(M). Finally, the identity matrix of size n
is denoted by In and the all ones m× n matrix is denoted by Jm,n. Two matrices M,N ∈Mn(Z)
are equivalent, if there exist P,Q ∈ GLn(Z) such that N = PMQ. And it is denoted by N ∼M .

2. Graphs with few trivial critical ideals

In this section, we will introduce the critical ideals of a graph and the class of graphs with k
or less trivial critical ideals, denoted by Γ≤k. After that, we define the set of minimal forbidden
graphs of Γ≤k. We finish this section with the classification of G1, which consists of the complete
graphs.

17
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Given a connected graph G = (V (G), E(G)) and a set of indeterminates XG = {xu |u ∈ V (G)},
the generalized Laplacian matrix L(G,XG) of G is the matrix with rows and columns indexed by
V (G) given by

L(G,XG)uv =

{
xu if u = v,

−muv otherwise,

where muv is the multiplicity of the edge uv, that is, the number of the edges between vertices u
and v. For all 1 ≤ i ≤ n, the i-critical ideal of G is the determinantal ideal given by

Ii(G,XG) = 〈{det(m) |m is a square submatrix of L(G,XG) of size i}〉 ⊆ Z[XG].

By convention Ii(G,XG) = 〈1〉 if i < 1, and Ii(G,XG) = 〈0〉 if i > n. We say that a critical ideal
is trivial when it is equal to 〈1〉.

Definition 2.1. The algebraic co-rank of G, denoted by γ(G), is the number of critical ideals
of G equal to 〈1〉.

Definition 2.2. For all k ∈ N, let Γ≤k = {G |G is a simple connected graph with γ(G) ≤ k}
and Γ≥k = {G |G is a simple connected graph with γ(G) ≥ k}.

Note that Γ≤k and Γ≥k+1 are disjoint sets and that a characterization of one of the sets leads to
a characterization of the other one. Now let us recall some basic properties about critical ideals, for
more details see [22]. It is known that if i ≤ j, then Ij(G,XG) ⊆ Ii(G,XG). Moreover, if H is an
induced subgraph of G, then Ii(H,XH) ⊆ Ii(G,XG), for all i ≤ |V (H)|, and hence γ(H) ≤ γ(G).
This implies that Γ≤k is closed under induced subgraphs, that is, if G ∈ Γ≤k and H is an induced
subgraph of G, then H ∈ Γ≤k.

Recall that fk(G) denote the number of invariant factors of K(G) that are equal to k, and
Gi = {G : G is a simple connected graph with f1(G) = i}. Presumably, the set Γ≤k behaves
better than Gk. It is not difficult to see that unlike of Γ≤k the set Gk is not closed under induced
subgraphs. For instance, c(S3) belongs to G2, but S3 belongs to G3. Similarly, the graph K6\{2P2}
belongs to G3, meanwhile K5 \ {2P2} belongs to G2. Moreover, if H is an induced subgraph of G,
then it is not always true that K(H) E K(G). For example, K(K4) ∼= Z2

4 5 K(K5) ∼= Z3
5. Finally,

Theorems 2.10 and 2.22 give us additional evidence that Γ≤k behaves better than Gk. Moreover,
Theorem 3.6 of [22] implies that γ(G) ≤ f1(G) for any graph, and thus Gk ⊆ Γ≤k for all k ≥ 0.

Definition 2.3. A graph G is forbidden (or an obstruction) for Γ≤k if and only if γ(G) ≥ k+1.
Let Forb(Γ≤k) be the set of minimal (under the induced subgraphs property) forbidden simple graphs
for Γ≤k. A graph G is called γ-critical if γ(G \ v) < γ(G) for all v ∈ V (G).

Thus G ∈ Forb(Γ≤k) if and only if G is γ-critical with γ(G) ≥ k + 1 and γ(G − v) ≤ k for
each v ∈ V (G).

Given a family of graphs F , a graph G is called F -free if no induced subgraph of G is isomorphic
to a member of F . Thus, G belongs to Γ≤k if and only if G is Forb(Γ≤k)-free, or equivalently, G
belongs to Γ≥k+1 if and only if G contains a graph of Forb(Γ≤k) as an induced subgraph.

These ideas are useful in characterization of Γ≤k. For instance, since γ(P2) = 1 and no one of
its induced subgraphs has γ ≥ 1, then P2 ∈ Forb(Γ≤0). Moreover, it is easy to see that T1 is the
only connected graph P2-free. Thus, since I1(T1, {x}) 6= 〈1〉, then we get that Forb(Γ≤0) = {P2},
and Γ≤0 consists of the graph with one vertex. Also, it is not difficult to prove that G0 = Γ≤0

and that the set of non-necessarily connected graphs with algebraic co-rank equal to zero consists
only of the trivial graphs. In the next section, we will use this kind of arguments in order to get
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Forb(Γ≤k) and characterize Γ≤k for k equal to 1 and 2. Now, we obtain the characterization of
Γ≤1.

Theorem 2.4. If G is a simple connected graph, then the following statements are equivalent:

(i) G ∈ Γ≤1,
(ii) G is P3-free,

(iii) G is a complete graph.

Proof. (i)⇒ (ii) Since γ(P3) = 2, then clearly G must be P3-free.
(ii) ⇒ (iii) If G is not a complete graph, then it has two vertices not adjacent, say u and v.

Let P be the smallest path between u and v. Thus, the length of P is greater or equal to 3. So,
P3 is an induced subgraph of both P and G. Therefore, G is a complete graph.

(iii) ⇒ (i) It is easy to see that for any non-trivial simple connected graph, its first critical
ideal is trivial. Meanwhile I1(K1, {x}) = 〈x〉. On the other hand, the 2-minors of a complete
graphs are of the forms: −1 + xixj and 1 + xi. Since −1 + xixj ∈ 〈1 + x1, ..., 1 + xn〉, then

(4) I2(Kn, XKn) =

{
〈−1 + x1x2〉 if n = 2, and,

〈1 + x1, ..., 1 + xn〉 if n ≥ 3.

Therefore γ(Kn) ≤ 1. In fact, the set {1+x1, ..., 1+xn} is a reduced Gröbner basis for I2(Kn, XKn),
see [22, Theorem 3.14]. �

In light of Theorem 2.4, the characterization of G1 is as follows: Clearly, G1 ⊆ Γ≤1 \G0. Now let
G ∈ Γ≤1 \ {K1}, that is, G = Kn with n ≥ 2 and f1(G) ≥ 1. It is easy to verify from Equation 4
that the second invariant factor of K(G) is equal to I2(Kn, XKn) |{xv=n−1 | v∈Kn} which is different
to 〈1〉.

Corollary 2.5. [34] If G is a simple connected graph with n ≥ 2 vertices, then f1(G) = 1 if
and only if G is a complete graph.

A crucial fact in the proof of Theorem 2.4 was that P3 belongs to Forb(Γ≤1), and that any
other connected simple graph belonging to Γ≥2 contains P3. This leads to the following corollary.

Corollary 2.6. Forb(Γ≤1) = {P3}.

Next corollary give us the non-connected version of Theorem 2.4.

Corollary 2.7. If G is a simple non-necessary connected graph, then the following statements
are equivalent:

(i) γ(G) ≤ 1,
(ii) G is {P3, 2P2}-free,

(iii) G is a disjoint union of a complete graph and a trivial graph.

We proceed with the proof of Corollary 2.7, we present a lemma that help us to calculate the
critical ideal of a non-connected graph. It may be useful to recall that the product of the ideals I
and J of a commutative ring R, which we denote by IJ , is the ideal generated by all the products
ab where a ∈ I and b ∈ J .

Lemma 2.8. [22, Proposition 3.4] If G and H are two vertex-disjoint graphs, then

Ii(G+H, {XG, YH}) =
〈
∪ij=0Ij(G,XG)Ii−j(H,YH)

〉
for all 1 ≤ i ≤ |V (G+H)|.
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By this lemma we have that γ(G+H) = γ(G) + γ(H) when G and H are vertex-disjoint.

Proof of corollary 2.7. (i)⇒ (ii) It follows since γ(2P2) = 2 and γ(P3) = 2.
(ii) ⇒ (iii) Let G1, . . . , Gs be the connected components of G. Then by Theorem 2.4 and

Lemma 2.8, Gi is a complete graph for all 1 ≤ i ≤ s. Since 2P2 must not be an induced subgraph
of G, then at most one of the Gi has order greater than 1.

(iii) ⇒ (i) If G = Kn + Tm, then it is not difficult to see that I1(Tm, YTm) = 〈y1, ..., ym〉 and

I2(Tm, YTm) =
〈∏

i 6=j yiyj

〉
. Thus by Lemma 2.8,

I2(G, {XKn , YTm}) = 〈I2(Kn, XKn), I1(Kn, XKn)I1(Tm, YTm), I2(Tm, YTm)〉 6= 〈1〉 . �

3. Graphs with algebraic co-rank equal to two

The main goal of this section is to classify the simple graphs on Γ≤2. After, we use the
contention G2 ⊆ Γ≤2 to classify the simple graphs whose critical group has two invariant factors
equal to 1. As in the case of Γ≤1, the characterization of Γ≤2 relies heavily in the two facts: (1)
Γ≤2 is closed under induced subgraphs and (2) we have a good guessing about Forb(Γ≤2). We
begin by introducing a set of graphs in the Forb(Γ≤2).

Proposition 2.9. Let F2 be the set of graphs consisting of P4, K5 \ S2, K6 \M2, cricket and
dart, see Figure 3. Then F2 ⊆ Forb(Γ≤2).

P4 K5 \ S2 K6 \M2 cricket dart

Figure 3. The set F2 of graphs.

Proof. It is not difficult to see that the generalized Laplacian matrix of the graphs on F2 are
given by:

L(P4) =


x1 −1 0 0
−1 x2 −1 0
0 −1 x3 −1
0 0 −1 x4

 , L(K5 \ S2) =


x1 0 −1 −1 0
0 x2 −1 −1 −1
−1 −1 x3 −1 −1
−1 −1 −1 x4 −1
0 −1 −1 −1 x5

 ,

L(cricket) =


x1 0 0 −1 0
0 x2 −1 −1 0
0 −1 x3 −1 0
−1 −1 −1 x4 −1
0 0 0 −1 x5

 , L(dart) =


x1 −1 0 −1 0
−1 x2 −1 −1 0
0 −1 x3 −1 0
−1 −1 −1 x4 −1
0 0 0 −1 x5

 ,

L(K6 \M2) =


x1 0 −1 −1 −1 −1
0 x2 −1 −1 −1 −1
−1 −1 x3 −1 −1 0
−1 −1 −1 x4 −1 −1
−1 −1 −1 −1 x5 −1
−1 −1 0 −1 −1 x6

 .
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In these matrices, we have marked in gray some 3× 3 submatrices whose determinant is equal to
±1. Then γ(G) ≥ 3 for all G ∈ F2. Finally, using any computer algebra system, like Macaulay 2,
one can note that the graphs in F2 have algebraic co-rank equal to 3. Moreover, it can be checked
that any of its induced subgraphs has algebraic co-rank less than or equal to 2. �

One of the main results of this chapter is the following:

Theorem 2.10. Let G be a simple connected graph. Then, G ∈ Γ≤2 if and only if G is an
induced subgraph of Km,n,o or Tn ∨ (Km +Ko) with m,n, o ≥ 0.

We divide the proof of Theorem 2.10 in two steps. First we classify the connected graphs that
are F2-free. After that, we check that all these graphs have algebraic co-rank less than or equal to
two.

Theorem 2.11. A simple connected graph is F2-free if and only if it is an induced subgraph of
Km,n,o or Tn ∨ (Km +Ko) with m,n, o ≥ 0.

Proof. First, one implication is clear, because Km,n,o and Tn ∨ (Km + Ko) are F2-free. The
other part is divided in three cases by considering the clique number ω(G) of G: when ω(G) = 2,
ω(G) = 3, and ω(G) ≥ 4.

The case when ω(G) = 2 is very simple. Since ω(G) = 2, there exist a, b ∈ V (G) such that
ab ∈ E(G). Clearly, NG(a) ∩ NG(b) = ∅. Moreover, if x ∈ {a, b}, then uv /∈ E(G) for all
u, v ∈ NG(x). On the other hand, since G is P4-free, then uv ∈ E(G) for all u ∈ NG(a) and
v ∈ NG(b). Therefore, G is the complete bipartite graph.

Now assume that ω(G) = 3. Let a, b and c be vertices of G that induce a complete graph. For
all X ⊆ {a, b, c}, let VX = {v ∈ V (G) : NG(v) ∩ {a, b, c} = X}. Clearly V{a,b,c} = ∅, because
ω(G) = 3. In a similar way, if X ⊆ {a, b, c} has size two, then set VX induce a trivial graph. Also,
since G is cricket-free, Vx induces a complete graph for all x ∈ {a, b, c}. Thus Vx has at most two
vertices.

Now, given U, V ∈ V (G), let E(U, V ) = {uv ∈ E(G) : u ∈ U and v ∈ V }. Let x 6= y ∈ {a, b, c}
and z ∈ {a, b, c} such that {x, y, z} = {a, b, c}. Assume that Vx, Vy and V{x,y} are not empty. Let
u ∈ Vx and v ∈ Vy. If uv ∈ E(G), then {u, v, y, z} induced a P4. Therefore, E(Vx, Vy) = ∅. In a
similar way, since G is P4-free, we get E(Vx, V{x,y}) = ∅.

Claim 2.12. At least two of the sets Va, Vb or Vc are empty. Furthermore, if Va 6= ∅, then G
is an induced subgraph of Tl ∨ (K2 +K2), where l = |V{b,c}|+ 1.

Proof. First, assume that the sets Vx and Vy are non empty. Let u ∈ Vy, v ∈ Vx. Since u and
v are not adjacent, the vertices {u, x, y, v} induce a P4. Therefore, at least one of the sets Vx or
Vy is empty.

Without loss of generality, assume that Va is not empty. Since there is no edge between Va and
V{a,b}, then V{a,b} = ∅. Otherwise, if u ∈ V{a,b} and v ∈ Va, then the vertices {u, v, a, b, c} induces
a dart. In a similar way V{a,c} = ∅. On the other hand, if V{b,c} is not empty and there are two
vertices u ∈ V{b,c} and v ∈ Va such that uv /∈ E(G), then the vertices {u, b, a, v} induces a P4.
Therefore, either E(Va, V{b,c}) = {uv |u ∈ Va and v ∈ V{b,c}} or the set V{b,c} is empty. Finally,
since Va is a complete graph with at most two vertices, the result follows. �

Now, we can assume that Vx = ∅ for all x ∈ {a, b, c}. Let {x, y, z} = {a, b, c}. If uv /∈ E(G) for
some u ∈ V{x,y}, v ∈ V{x,z}, then {u, y, z, v} induces a P4. Therefore, uv ∈ E(G) for all u ∈ V{x,y}
and u ∈ V{x,z}, and G is an induced subgraph of the complete tripartite graph.
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We finish with case when ω(G) ≥ 4. Let W = {a, b, c, d} be a complete subgraph of G of size
four and let

Vi = {v ∈ V (G) \W : |NG(V ) ∩W | = i} for all i = 0, 1, 2, 3, 4.

Since G is K5 \ S2-free, then V2 = ∅.

Claim 2.13. The graph induced by the set V1 is a complete graph.

Proof. Let u, u′ ∈ V1 and suppose there is no edge between u and u′. Let x, y ∈ W be
the vertices adjacent with u and u′, respectively. If x 6= y, then {u, x, y, u′} induces a P4; a
contradiction. On the other hand, if x = y, let z 6= w ∈ W \ x. Since u and u′ are not adjacent
with both z and w, then {x, z, w, u, u′} induces a cricket; a contradiction. �

Let v, v′ ∈ V3 and assume that are adjacent. Let x, y ∈ W such that x /∈ NG(v) and y /∈ NG(v′).
If x 6= y, then {v, v′} ∪W induces a K6 \M2; a contradiction. On the other hand, if x = y, then
{v, v′} ∪W contains a K5 \ S2 as induced graph; a contradiction. Therefore, V3 induces a trivial
graph.

Now let u ∈ V1, v ∈ V3, x, y ∈ W such that xu ∈ E(G), yv /∈ E(G). Assume that uv /∈ E(G).
Let z ∈ W \ {x, y}. If x = y, then {v, z, x, u} induces a P4; a contradiction. On the other
hand, if x 6= y, then G must contains a dart as induced subgraph; a contradiction. Therefore
E(V1, V3) contains all the possible edges. Since uv ∈ E(G), then x = y. Otherwise, if x 6= y, then
{y, z, v, u} induces a P4; a contradiction. Therefore we can assume without loss of generality that
{a} = NG(V1) ∩W = (NG(V3) ∩W )c.

Now, let w ∈ V4, u ∈ V1, and v ∈ V3. If uw ∈ E(G), then {u,w, a, b, c} induces a K5 \ S2.
Therefore, E(V1, V4) = ∅. In a similar way, if vw /∈ E(G), then {v, a, w, b, c} induces a K5 \ S2.
Therefore, E(V3, V4) = {vw | v ∈ V3 and w ∈ V4}.

Since G is {K5 \ S2, K6 \ M2}, then is not difficult to see that the graph induced by V4 is
{K2 + T1, C4}-free. Thus V4 induces either a trivial graph, a complete graph, or a complete graph
minus an edge. Moreover, if ww′ /∈ E(G) for some w 6= w′ ∈ V4, then {w,w′, a, v, b, c} induces a
K6 \M2. Thus, if V3 6= ∅, then V4 induces a complete graph. Therefore, if V1, V3, V4 = ∅, then G
is a complete graph.

Claim 2.14. If V1, V3 = ∅ and V4 6= ∅, then G is an induced subgraph of T1 ∨ (Km + Kn) for
some m,n ∈ N.

Proof. If |V| = |V4| = 1, then the result is clear. Therefore, we can assume that either |V4| ≥ 2
or |V0| ≥ 2. Moreover, we need to consider three cases for V4, when it induces a trivial graph, a
complete graph, or a complete graph minus an edge. Assume that V4 induces a trivial graph. If
|V4| ≥ 2, let o ∈ V0 and w,w′ ∈ V4. If ow ∈ E(G) and ow′ ∈ E(G), then {o, w, w′, a} induces a P4;
a contradiction. Thus, either E(o, V4) = {ow |w ∈ V4} or E(o, V4) is empty. Therefore, since G is
connected, we get the result when |V0| = 1.

Now, assume that |V0| ≥ 2. Since G is connected, there exist o ∈ V0 such that ow ∈ E(G) for
some w ∈ V4. Let o′ ∈ V0 such that E(o′, V4) is empty. Since G is connected, there exist a path
from o′ to o. Let P be a minimum path between o′ and o. In this case, {V (P ), w, a} induces a path
with more than four vertices; a contradiction. Therefore, E(V0, V4) = {ow | o ∈ V0 and w ∈ V4}.
Moreover, since G is K6 \M2-free, then V0 induces a trivial graph and we get the result.

Now, assume that V4 induces a complete graph. Since G is K5 \ S2-free, o is adjacent with
at most one vertex in V4. Moreover, all the vertices in V0 are adjacent with a unique vertex in
V4. Otherwise, let o, o′ ∈ V0 and w,w′ ∈ V4 such that ow, o′w′ ∈ E(G) and ow′, o′w /∈ E(G). If
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oo′ ∈ E(G), then {a, w, o, o′} induces a P4; a contradiction. Also, if oo′ /∈ E(G) and ww′ ∈ E(G),
then {w,w′, o, o′} induces a P4; a contradiction. Let w ∈ V4 such that all the vertices in V0 are
adjacent with w. Then V0 induces a complete graph. Otherwise, {a, b, w, o, o′} induces a cricket; a
contradiction. Therefore G is an induced subgraph of T1 ∨ (Km +Kn) for some m,n ∈ N.

Finally, when V4 induces a complete graph minus an edge, following similar arguments to those
given in the case when V4 induces a complete graph we get that G is an induced subgraph of
T2 ∨ (Km +Kn) for some m,n ∈ N. �

Therefore we can assume that V1 ∪ V3 6= ∅. Let u ∈ V1 ∪ V3, o ∈ V0, and x 6= y ∈ W such that
x /∈ NG(u) and y ∈ NG(u). If uo /∈ E(G), then {x, y, u, o} induces a P4; a contradiction. Thus,
there are no edges between the vertex sets V0 and V1 ∪ V3. Moreover, let w ∈ V4. If ow ∈ E(G),
then {a, b, u, w, o} induces a dart when u ∈ V3 and {u, a, w, o} induces a P4 when u ∈ V1. Therefore,
there are no edges between V0 and V4. Since G is connected, V0 = ∅ and therefore G is an induced
subgraph of Tn ∨ (Km +Ko). �

To finish the proof of Theorem 2.10 we need to prove that the third critical ideal of the graphs
Km,n,o and Tn ∨ (Km + Ko) is not trivial. If m + n + o ≤ 2, then the third critical ideal is equal
to zero. Also, if m + n + o = 3, then the third critical ideal is equal to the determinant of the
generalized Laplacian matrix. Moreover, [22, Theorem 3.16] proves that the algebraic co-rank of
the complete graph is equal to 1.

Theorem 2.15. If Km,n,o is connected with m ≥ n ≥ o and m+ n+ o ≥ 4, then
(5)

I3(Km,n,o, {X,Y, Z}) =



〈2,
⋃m
i=1 xi,

⋃n
i=1 yi,

⋃o
i=1 zi〉 if m,n, o ≥ 2,

〈
⋃m
i=1 xi,

⋃n
i=1 yi, z1 + 2〉 if m ≥ 2, n ≥ 2, o = 1,

〈
⋃m
i=1 xi, y1 + z1 + 2〉 if m ≥ 3, n = 1, o = 1,

〈x1x2 + x1 + x2, x1z1 + x1, x2z1 + x2, y1 + z1 + 2〉 if m = 2, n = 1, o = 1,

〈
⋃m
i=1 xi,

⋃n
i=1 yi〉 if m ≥ 3, n ≥ 3, o = 0,

〈
⋃m
i=1 xi, y1 + y2〉 if m ≥ 3, n = 2, o = 0,

〈x2y2, x1 + x2, y1 + y2〉 if m = 2, n = 2, o = 0,

〈
⋃m
i=1 xi〉 if m ≥ 3, n = 1, o = 0.

Theorem 2.16. If Tn ∨ (Km + Ko) is connected with m ≥ o, m + n + o ≥ 4 such that
Tn ∨ (Km +Ko) is not the complete graph or the complete bipartite graph, then
(6)

I3(Tn∨(Km+Ko), {X,Y, Z}) =



〈2,
⋃m
i=1(xi + 1),

⋃n
i=1 yi,

⋃o
i=1(zi + 1)〉 if m,n, o ≥ 2,

〈
⋃m
i=1(xi + 1), y1 + 2,

⋃o
i=1(zi + 1)〉 if m ≥ 2, n = 1, o ≥ 2,

〈
⋃m
i=1(xi + 1),

⋃n
i=1 yi, z1 − 1〉 if m ≥ 2, n ≥ 2, o = 1,

〈x1 + z1,
⋃n
i=1 yi〉 if m = 1, n ≥ 3, o = 1,

〈x1 + z1, y1 + y2, y2z1, 〉 if m = 1, n = 2, o = 1,

〈
⋃m
i=1(xi + 1), z1y1 + z1 − 1〉 if m ≥ 2, n = 1, o = 1,

〈
⋃m
i=1(xi + 1),

⋃n
i=1 yi〉 if m ≥ 3, n ≥ 3, o = 0,

〈x1 + x2 + 2,
⋃n
i=1 yi〉 if m = 2, n ≥ 3, o = 0,

〈
⋃m
i=1(xi + 1), y1y2 + y1 + y2〉 if m ≥ 3, n = 2, o = 0,

〈x1 + x2 + 2, x2y1 + y1, x2y2 + y2, y1y2 + y1 + y2〉 if m = 2, n = 2, o = 0,
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The proofs of Theorems 2.15 and 2.16 relies on the description of the 3-minors of the generalized
Laplacian matrices of Km,n,o and Tn ∨ (Km +Ko).

Proof of Theorem 2.15. In order to simplify the arguments in the proof we separate it in
two parts. We begin by finding the 3-minors of the generalized Laplacian matrix of the complete
bipartite graph and using it to calculate their third critical ideals. An after that, we do the same
for the general case of the complete tripartite graph.

Lemma 2.17. For m,n ≥ 1, let Lm,n be the generalized Laplacian matrix of the complete
bipartite graph Km,n. That is,

Lm,n = L(Km,n, {XTm , YTn}) =

[
L(Tm, XTm) −Jm,n
−Jn,m L(Tn, YTn)

]
.

Then every 3-minor of Lm,n is equal, up to sign, to one of the following polynomials listed below:
• yj1 , yj1yj2 , and yj1yj2yj3 when n ≥ 3, • xi1 , xi1xi2 , and xi1xi2xi3 when m ≥ 3,
• yj1yj2xi1 − yj1 − yj2 when n ≥ 2, • xi1xi2yj1 − xi1 − xi2 when m ≥ 2,
• xi1 + xi2 , yj1 + yj2 and xi1yj1 when m ≥ 2 and n ≥ 2,

where 1 ≤ i1 < i2 < i3 ≤ n and 1 ≤ j1 < j2 < j3 ≤ n.

Proof. Before to proceed with the proof we establish some notation corresponding to row and
column indices. Let I = {i1, i2, i3} such that 1 ≤ i1 < i2 < i3 ≤ m + n, and J = {j1, j2, j3} such
that 1 ≤ j1 < j2 < j3 ≤ m + n. Let I1 = I ∩ [m], I2 = Ic1, J1 = J ∩ [m], and J2 = J c

1 . Also in
the following i′t = it −m and j′t = jt −m, for all 1 ≤ t ≤ 3.

In order to find all the 3-minors of Lm,n we need to calculate the determinants of all non-
singular matrices of the form Lm,n[I,J ]. Since the generalized Laplacian matrix is symmetric, we
can assume without loss of generalization that |I2| ≤ |J2|. Let L = Lm,n[I;J ] be non-singular.
First, consider the case when I2 is empty. Since the determinant of L is equal to zero when
|J2| ≥ 2, only remains to consider the cases when |J2| = 0 or |J2| = 1. If |J2| = 0, then m ≥ 3, L
is a submatrix of L(Tm, XTm), and the determinant of L is equal to xi1xi2xi3 . In a similar way, if
|J2| = 1, then m ≥ 3, n ≥ 1, and L is equal to (up to row permutation) xj1 0 −1

0 xj2 −1
0 0 −1


whose determinant is equal to −xj1xj2 .

Now, consider the case when |I2| = 1. In a similar way, L has determinant different from zero
when |J2| = 1 or |J2| = 2. If |J2| = 1, then there are essentially only four 3 × 3 non-singular
submatrices of Lm,n:  xi1 0 −1

0 A −1
−1 −1 B

 ,
where A is equal to 0 (when m ≥ 3) and xi2 , and B is equal to 0 (when n ≥ 2) and yi′3 . Clearly
det(L) = ABxi1 − A − xi1 . Thus we have the following minors: xi1xi2yi′3 − xi1 − xi2 , −xi1 − xi2 ,
−xi1 . If |J2| = 2, then m ≥ 2, n ≥ 2, and L has determinant equal to

det

 xj1 −1 −1
0 −1 −1
−1 0 yi′3

 = −xj1yi′3 .



3. GRAPHS WITH ALGEBRAIC CO-RANK EQUAL TO TWO 25

When |I2| = 2 we have two cases, when either |J2| = 2 or |J2| = 3. If |J2| = 2, then L is equal to: A −1 −1
−1 yi′2 0
−1 0 B


where A is equal to 0 (when m ≥ 2) or xi1 and B is equal to 0 (when n ≥ 3) or yi′3 . It is easy
to see that det(L) = AByi′2 − A − yi′2 . Thus we have the following minors: xi1yi′2yi′3 − yi′2 − yi′3 ,
−yi′2 − yi′3 , −yi′2 . If |J2| = 3, then m ≥ 1, n ≥ 3 and there are only one non-singular matrix whose
determinant is equal to

det

 −1 −1 −1
yi′2 0 0
0 yi′3 0

 = −yi′2yi′3 .

Finally, if |I2| = 3, then n ≥ 3, L is a submatrix of L(Tm, YTm), and therefore its determinant is
equal to yi′1yi′2yi′3 . �

We can use Lemma 2.17 to get the third critical ideal of the complete bipartite graph. For
instance, it is not difficult to see that I3(Km,n, {X, Y }) = 〈

⋃m
i=1 xi,

⋃n
i=1 yi〉 when m ≥ 3 and n ≥ 3.

In a similar way, since xi1 + xi2 , xi1yj1 , yj1yj2xi1 − yj1 − yj2 , xi1xi2 , xi1xi2xi3 ∈ 〈
⋃m
i=1 xi, y1 + y2〉,

I3(Km,n, {X, Y }) = 〈
⋃m
i=1 xi, y1 + y2〉 when m ≥ 3 and n = 2. The other cases follow in a similar

way.
Therefore in order to calculate the third critical ideal of the complete tripartite graph we need

to calculate their 3-minors as below.

Theorem 2.18. For m,n, o ≥ 1, let Lm,n,o be the generalized Laplacian matrix of the tripartite
complete graph Km,n,o. That is,

Lm,n,o = L(Km,n,o, {XTm , YTn , ZTo}) =

 L(Tm, XTm) −Jm,n −Jm,o
−Jn,m L(Tn, YTn) −Jn,o
−Jo,m −Jo,n L(To, ZTo)

 .
Then every 3-minor of Lm,n,o is equal, up to sign, to one of the polynomials listed below:
• xi1 , xi1xi2 , and xi1xi2xi3 when m ≥ 3, • 2 when m ≥ 2, n ≥ 2 and o ≥ 2,
• yj1 , yj1yj2 , and yj1yj2yj3 when n ≥ 3, • −2− xi − yj − zk + xiyjzk,
• zk1

, zk1
zk2

, and zk1
zk2

zk3
when o ≥ 3,

• xi1 , yj1 , xi1 + 2, yj1 + 2, xi1 + xi2 , yj1 + yj2 , and xi1yj1 when m ≥ 2 and n ≥ 2,
• xi1 , zk1

, xi1 + 2, zk1
+ 2,xi1 + xi2 , zk1

+ zk2
, and xi1zk1

when m ≥ 2 and o ≥ 2,
• yj1 , zk1 , yj1 + 2, zk1 + 2, yj1 + yj2 , zk1 + zk2 , and yj1zk1 , when n ≥ 2 and o ≥ 2,
• yj1 + zk1 + 2, xi1(yj1 + 1), xi1(zk1 + 1), xi1xi2 + xi1 + xi2 , xi1xi2yj1 − xi1 − xi2 , and xi1xi2zk1 − xi1 − xi2
when m ≥ 2,
• xi1 + zk1

+ 2, yj1(xi1 + 1), yj1(zk1
+ 1), yj1yj2 + yj1 + yj2 , yj1yj2xi1 − yj1 − yj2 , and yj1yj2zk1

− yj1 − yj2
when n ≥ 2,
• xi1 + yj1 + 2, zk1(xi1 + 1), zk1(yj1 + 1), zk1zk2 + zk1 + zk2 , zk1zk2xi1 − zk1 − zk2 , and zk1zk2yj1 − zk1 − zk2

when o ≥ 2,

where 1 ≤ i1 < i2 < i3 ≤ m, 1 ≤ j1 < j2 < j3 ≤ n, and 1 ≤ k1 < k2 < k3 ≤ o.

Proof. We will follow a similar proof to the proof given for Lemma 2.17. Let I = {i1, i2, i3}
with 1 ≤ i1 < i2 < i3 ≤ m + n + o and J = {j1, j2, j3} with 1 ≤ j1 < j2 < j3 ≤ m + n + o.
Moreover, let I1 = I ∩ [m], I2 = I ∩ {m + 1, . . . ,m + n}, I3 = I ∩ {m + n + 1, . . . ,m + n + o},
J1 = J ∩ [m], J2 = J ∩ {m+ 1, . . . ,m+ n}, J3 = J ∩ {m+ n+ 1, . . . ,m+ n+ o}. Also, in the
following i′t = it −m, i′′t = it −m− n, j′t = jt −m and j′′t = jt −m− n, for t ∈ [3].
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Let L = Lm,n,o[I;J ]. First, in the same way that in the proof of Lemma 2.17 we can assume
that L is non-singular. Several of the 3-minor of Lm,n,o can be calculated using Lemma 2.17. For
instance, if Ii = Ji = ∅ for some i = 1, 2, 3, then L is a submatrix of L(Km,n, {XTm , YTn}) and
the corresponding 3-minor can be calculated using Lemma 2.17. Therefore we can assume that,
if Ii = ∅, then Ji 6= ∅ for all i = 1, 2, 3. Moreover, if Ii = ∅, then |Ji| = 1 for all i = 1, 2, 3.
Because otherwise either L will have two identical columns; a contradiction to the fact that L is
non-singular. In a similar way, if Ji = ∅, then |Ii| = 1 for all i = 1, 2, 3. If |Ii| = 3 for some
i = 1, 2, 3, then L is a submatrix of the generalized Laplacian matrix of a complete bipartite graph.
Therefore we can assume that |Ii| ≤ 2 and |Ji| ≤ 2 for all i = 1, 2, 3.

The first case that we need to consider is when Ii 6= ∅ 6= Ji for all 1 ≤ i ≤ 3, that is,
|Ii| = |Ji| = 1 for all 1 ≤ i ≤ 3. In this case we have that

L =

 A −1 −1
−1 B −1
−1 −1 C

 ,
where A is equal to 0 (when m ≥ 2) or xi1 , B is equal to 0 (when n ≥ 2) or yi′2 , and C is equal to
0 (when n ≥ 2) or zi′′3 . Since detL = ABC −A−B−C − 2 we get eight of the 3-minors of Lm,n,o.
Since |Ii| ≤ 2 (|Ji| ≤ 2) for all i = 1, 2, 3, then there are no two I’s (J ’s) empty. Therefore only
remains the cases: when only one of the I’s is empty and the case when one of the I’s is empty
and one of the J ′s is empty.

Consider the case when only one of the sets I’s is empty, that is, |Ji| = 1 for all i = 1, 2, 3.
Assume that I3 = ∅. Then we need to consider the following two matrices (when |I1| = 1 and
|I1| = 2):

L1 =

 A −1 −1
−1 0 −1
−1 B −1

 and L2 =

 A −1 −1
0 −1 −1
−1 B −1

 ,
where A is equal to 0 (when m ≥ 2 and m ≥ 3, respectively) or xi′1 and B is equal to 0 (when
n ≥ 3 and n ≥ 2, respectively) or yi′3 . It is not difficult to see that det(L1) = AB − B and
det(L2) = AB −A. Thus, we get the minors xi1yi′3 − yi′3 (when n ≥ 2), xi1yi′3 − xi1 (when m ≥ 2),
−yi′3 and −xi1 (when m ≥ 2 and n ≥ 2). We get similar 3-minors when I2 = ∅ or I1 = ∅.

Finally, consider the case when one of the I’s is empty and one of the J ′s is empty. Assume
that I3 = ∅ and J2 = ∅. Then |I2| = 1 and L is equal to: A 0 −1

0 A′ −1
−1 −1 −1

 ,
where A is equal to 0 or xi′1 and A′ is equal to 0 or xi2 . Clearly detL = −AA′ −A−A′. Thus we
get the 3-minors xi1xi2 + xi1 + xi2 (when m ≥ 2) and xi1 and xi2 (when m ≥ 3). Similarly when
J1 = ∅ and the other cases. �

Now the computation of the third critical ideal of the tripartite complete graph can easily done
by using previous theorem. �

Proof of Theorem 2.16. Similarly to the proof of Theorem 2.15 we need to find the 3-
minors of the generalized Laplacian matrix of Tn ∨ (Km +Ko). We begin with Km ∨ Tn and after
that we do the same for Tn ∨ (Km + Ko). We omit the proofs of Lemma 2.19 and Theorem 2.20
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because are rutinary and both follows by using similar arguments to those in Lemma 2.17 and in
Theorem 2.18, respectively.

Lemma 2.19. For m,n ≥ 1, let L′m,n be the generalized Laplacian matrix of Km ∨ Tn. That is,

L′m,n = L(Km ∨ Tn, {XKn , YTm}) =

[
L(Km, XKm) −Jm,n
−Jn,m L(Tn, YTn)

]
.

Then the 3-minors (with positive leading coefficient) of L′m,n are the following:
• yj1 , yj1yj2 , and yj1yj2yj3 when n ≥ 3,
• xi1yj1yj2−yj1−yj2 when n ≥ 2, • xi1xi2yj1−xi1−xi2−yj1−2 when m ≥ 2,
• yj1 when m ≥ 2 and n ≥ 3, • xi1 + 1 when m ≥ 3 and n ≥ 2,
• xi1 + xi2 + 2, xi1 + yj1 , xi1yj1yj2 and yj1yj2 + yj1 + yj2 when m ≥ 2 and n ≥ 2,
• (xi1 +1)(xi2 +1), (xi1 +1)(yi1 +1), and xi1xi2xi3−xi1−xi2−xi3−2 when m ≥ 3,

where 1 ≤ i1 < i2 < i3 ≤ m and 1 ≤ j1 < j2 < j3 ≤ n.

Theorem 2.20. For m,n, o ≥ 1, let L′m,n,o be the generalized Laplacian matrix of Tn ∨ (Km +
Ko). That is,

L′m,n,o = L(Tn ∨ (Km +Ko), {XKm , YTn , ZKo}) =

[
L(Km, XKm) −Jm,n 0m,o
−Jn,m L(Tn, YTn) −Jn,o
0o,m −Jo,n L(Ko, ZKo)

]
.

Then the 3-minors (with positive leading coefficient) of L′m,n,o are the following:
• xi1 + 1 when m ≥ 3 and (o ≥ 2 or n ≥ 2), • zk1 + 1 when o ≥ 3 and (m ≥ 2 or n ≥ 2),
• yj1 when n ≥ 3 and (m ≥ 2 or o ≥ 2), • 2 when m ≥ 2, n ≥ 2, and o ≥ 2,
• yj1 , yj1yj3 , and yj1yj2yj3 when n ≥ 3, • xi1yj1zk1

− xi1 − zk1
,

• xi1 + 1, zk1
(xi1 + 1), (xi1 + 1)(xi2 + 1), (xi1 + 1)(yj1 + 1), and xi1xi2xi3 − xi1 − xi2 − xi3 − 2, when m ≥ 3,

• zk1 + 1, xi1(zk1 + 1), (zk1 + 1)(zk2 + 1), (zk1 + 1)(yj1 + 1), and zk1zk2zk3 − zk1 − zk2 − zk3 − 2 when o ≥ 3,
• xi1 + zk1 , yj1 + yj2 , xi1yj1 , yj1zk1 , xi1yj1yj2 − yj1 − yj2 , and yj1yj2zk1 − yj1 − yj2 when n ≥ 2,
• xi1 + 1, xi1xi2 − 1, yj1zk1

+ zk1
− 1, zk1

(xi1 + 1), xi1xi2zk1
− zk1

, and xi1xi2yj1 − xi1 − xi2 − yj1 − 2,
when m ≥ 2,
• zk1

+ 1, xi1(zk1
zk2
− 1), zk1

zk2
− 1, xi1yj1 + xi1 − 1, xi1(zk1

+ 1), and zk1
zk2

yj1 − zk1
− zk2

− yj1 − 2,
when o ≥ 2,
• xi1 + 1, yj1 + 2, zk1 + 1, xi1xi2 − 1, and zk1zk2 − 1 when m ≥ 2 and o ≥ 2,
• xi1 + 1, yj1 , zk1

− 1, xi1 + yj1 , xi1 + xi2 + 2, yj1(xi1 + 1), and yj1yj2 + yj1 + yj2 when m ≥ 2 and n ≥ 2,
• xi1 − 1, yj1 , zk1

+ 1, zk1
+ yj1 , zk1

+ zk2
+ 2, yj1(zk1

+ 1), and yj1yj2 + yj1 + yj2 , when n ≥ 2 and o ≥ 2,

where 1 ≤ i1 < i2 < i3 ≤ m, 1 ≤ j1 < j2 < j3 ≤ n, and 1 ≤ k1 < k2 < k3 ≤ o. �

Theorems 2.15 and 2.16 implies that Forb(Γ≤2) = F2. Now, we present the non-connected
version of Theorem 2.10.

Corollary 2.21. A simple graph has algebraic co-rank equal to two if and only if it is the
disjoint union of a trivial graph with one of the following graphs:

• Km,n,o, where m ≥ 2, n+ o ≥ 1,
• Tn ∨ (Km +Ko), where m, o ≥ 2, m,n, o ≥ 1, or n ≥ 2 and m+ o ≥ 1.

Proof. It is not difficult to see that in the non-connected case we need to add the graphs
P3 + P2 and 3P2 to the set of forbidden graphs. The rest follows directly from Theorem 2.10. �

We finish this section with the classification of the graphs having critical group with 2 invariant
factors equal to one.

Theorem 2.22. The critical group of a connected simple graph has exactly two invariant factor
equal to 1 if and only if it is one of the following graphs:
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• Km,n,o, where m ≥ n ≥ o satisfy one of the following conditions:
∗ m,n, o ≥ 2 with the same parity,
∗ m,n ≥ 3, o = 1, and gcd(m+ 1, n+ 1) 6= 1,
∗ m ≥ 2, n = o = 1,
∗ m,n ≥ 2, o = 0 and gcd(m,n) 6= 1,
∗ m ≥ 2, n = 2, and o = 0, or
∗ m = 2 and n = 1.

• Tn ∨ (Km +Ko), where m ≥ o and n satisfy one of the following conditions:
∗ m,n, o ≥ 2 with the same parity,
∗ m, o ≥ 2, n = 1, and gcd(m+ 1, o+ 1) 6= 1,
∗ m,n ≥ 2, o = 1, and gcd(m+ 1, n− 1) 6= 1,
∗ m ≥ 1, n = o = 1,
∗ n ≥ 1, m = o = 1,
∗ m,n ≥ 3, o = 0, and gcd(m,n) 6= 1,
∗ m ≥ 2, n = 2, o = 0, or
∗ m = 2, n ≥ 2, o = 0.

Proof. It turns out from Theorems 2.15 and 2.16. �

4. The set Forb(Γ≤k).

The characterization of the γ-critical graphs with a given algebraic co-rank, Forb(Γ≤k), is very
important. For instance, we were able to characterize Γ≤k for k equal to 1 and 2 because we got
a finite set of γ-critical graphs with algebraic co-rank equal to k + 1 (for k equal to 1 and 2), and
after that we proved that all the graphs that do not contain a graph from this set as an induced
subgraph have algebraic co-rank less than or equal to k. In this section we give two infinite families
of forbidden simple graphs. This will prove that Forb(Γ≤k) is not empty for all k ≥ 0. Moreover,
we conjecture that Forb(Γ≤k) is finite for all k ≥ 0. To finish we present an example of a simple
graph G with algebraic co-rank equal to 5 but with no 5-minor equal to 1. That is, the 1 can be
obtained uniquely from a non trivial algebraic combination of 5-minors of L(G,X).

We begin by proving that the path with n+ 2 vertices is γ-critical with algebraic co-rank equal
to n+ 1.

Theorem 2.23. If n ≥ 0, then Pn+2 ∈ Forb(Γ≤n).

Proof. It is not difficult to prove γ(Pn+2) = n + 1, see Corollary 4.10 of [22]. On the other
hand, if H = Pn+2 \ v for some v ∈ V (Pn+2), then H is a disjoint union of at most two paths. Let
H = Pn1 + · · ·+ Pns with 1 ≤ s ≤ 2 and

∑s
i= ni = n+ 1, then by lemma 2.8 we get that

γ(H) =
s∑
i=1

γ(Pni) =
s∑
i=1

(ni − 1) =
s∑
i=1

ni − s = n+ 1− s < n+ 1.

Therefore Pn+2 ∈ Forb(Γ≤n). �

Now, we present another infinite family of graph that are γ-critical. Let Kn be the complete
graph with n vertices and Mk a matching of Kn with k edges. We begin by finding the critical
group of Kn \Mk.
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Proposition 2.24. If Kn is the complete graph with n vertices and Mk is a matching of k
edges, then

K(Kn \Mk) ∼=

{
Zn−2k−2
n ⊕ Zkn(n−2) if n ≥ 2k + 2,

Zn−2 ⊕ Zk−1
n(n−2) if n = 2k + 1.

Proof. If n = 2k + 1, then the result follows by [31, Theorem 1]. Therefore, we assume that
n ≥ 2k + 2. Given a ∈ Zk, let Nk+1(a) be the matrix given by[

1 a
0t Ik

]
.

If Mk = {v1v2, . . . , v2k−1v2k}, then

L(Kn \Mk, vn) =

[
[(n− 2)I2 + J2]⊗ Ik − J2k −J2k,n−2k−1

−Jn−2k−1,2k nIn−2k−1 − Jn−2k−1

]
,

where ⊗ is the tensor product of matrices. Now, since det(Nn−1(a)) = 1 for all a, then

L(Kn \Mk, vn) ∼ Nn−1(1)tNn−1(1)L(Kn \Mk, vn)Nn−1(−1)

= I1 ⊕ nIn−2k−2

k⊕
i=1

[
n− 1 1

1 n− 1

]
.

On the other hand,[
n− 1 1

1 n− 1

]
∼

[
0 1
−1 n− 1

] [
n− 1 1

1 n− 1

] [
1 −(n− 1)
0 1

]
=

[
1 0
0 n(n− 2)

]
.

Therefore, L(Kn \Mk, vn) ∼ Ik+1 ⊕ nIn−2k−2 ⊕ n(n− 2)Ik. �

Corollary 2.25. If n = 2k + 2, then Kn \Mk ∈ Forb(Γ≤k).

Proof. By Proposition 2.24 we have that

γ(Kn \Mk) ≤

{
k + 1 if n ≥ 2k + 2,

k if n = 2k + 1.

Now let n ≥ 2k+2, Mk = {v1v2, . . . , v2k−1v2k}, and M = L(Kn\Mk, X)[{1, . . . , 2k+1}, {2, . . . , 2k+
2}] be a square submatrix of generalized Laplacian matrix of Kn \Mk. Then

M =


0 −1 −1 −1
−1 0 −1 −1

. . . −1 −1
−1 −1 −1 0 −1
−1 −1 −1 −1 −1

 .
By [22, Theorem 3.13], det(M) = det(L(Kk, XKk))|{x1=0,...,xk−1=0,xk=−1}

3.13
= −1 and thus γ(Kn \

Mk) = k+1 for all n ≥ 2k+2. Finally, if n = 2k+2 and v ∈ V (Kn\Mk), then (Kn\Mk)\v is equal
to Kn−1\Mk or Kn−1\Mk−1. Hence, γ((Kn\Mk)\v) ≤ k and therefore Kn\Mk ∈ Forb(Γ≤k). �

This result proves that Forb(Γ≤k) is not empty for all k ≥ 0.
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Corollary 2.26. If k ≥ 0, then Forb(Γ≤k) is not empty.

For i ≥ 3, the set Forb(Γ≤i) is more complex than Forb(Γ≤1) and Forb(Γ≤2). For instance,
we will see that Forb(Γ≤3) has at least 49 graphs. Moreover, we conjecture that Forb(Γ≤k) is
finite.

Conjecture 2.27. For all k ∈ N the set Forb(Γ≤k) is finite.

Until now, all the graphs that were presented had algebraic co-rank equal to k because its
generalized Laplacian matrix has a k-minor equal to one. Next example shows a graph G with
γZ(G) = 5 having no a 5-minor equal to 1.

Example 2.28. Let G be the graph on Figure 14 and f1 = det(L(G,X)[{1, 2, 3, 4, 5}; {2, 3, 5, 6, 7}]) =

v1

v2 v3 v4 v5

v6

G L(G,X) =



x1 −1 −1 0 0 −1 −1
−1 x2 −1 0 0 0 −1
−1 −1 x3 −1 0 −1 −1
0 0 −1 x4 −1 −1 −1
0 0 0 −1 x5 −1 −1
−1 0 −1 −1 −1 x6 −1
−1 −1 −1 −1 −1 −1 x7



Figure 4. A graph G with seven vertices and its generalized Laplacian matrix.

x2 + x5 + x2x5, and f2 = det(L(G,X)[{1, 2, 3, 5, 6}; {2, 4, 5, 6, 7}]) = −(1 + x2 + x5 + x2x5). Then
〈f1, f2〉 = 1 and therefore γZ(G) = 5. However, it is not difficult to check that L(G,X) has no
5-minor is equal to one.

5. Cliques, stable sets and critical ideals

Let G = (V,E) a simple graph. If E ′ is a subset of E, the edge-induced subgraph G[E ′] is the
subgraph of G whose edge set is E ′ and whose vertex set consists of all ends of edges of E ′. Let
P,Q be two subsets of V , we denote by E(P,Q) the set of edges of G with one end in P and the
other end in Q. A clique of G is a subset S of V of mutually adjacent vertices, and the maximum
size of a clique of G is the clique number ω(G) of G. A subset S of V is called an independent set,
or stable set, of G if no two vertices of S are adjacent in G. The cardinality of a maximum stable
set in G is called the stability number of G and is denoted by α(G).

Definition 2.29. Given a simple graph G = (V,E) and a vector d ∈ ZV , the graph Gd is
constructed as follows. For each vertex u ∈ V is associated a new vertex set Vu, where Vu is a
clique of cardinality −du if du is negative, and Vu is a stable set of cardinality du if du is positive.
And each vertex in Vu is adjacent with each vertex in Vv if and only if u and v are adjacent in G.
Then the graph G is called the underlying graph of Gd.

A convenient way to visualize Gd is by means of a drawing of G, where the vertex u is colored
in black if du is negative, and colored in white if du is positive. We indicate the cardinality of Vu
by writing it inside the drawing of vertex u. When |du| = 1, we may color u in gray and avoid
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n1n2

n3

n4n6

n5

n7
n1

(i) graph G1 (ii) family of graphs F1
1 (iii) family of graphs F2

1

Figure 5. The family of graphs F1. A black vertex represents a clique of cardi-
nality nv, a white vertex represents a stable set of cardinality nv and a gray vertex
represents a single vertex. Where nv ≥ 0

writing the cardinality (see Figure 5). On the other hand, it will be useful to avoid writing the
cardinality when |du| = 2 (see Figure 6).

In general, the computation of the Gröbner bases of the critical ideals is more than complicated.
However, in the rest of this section we will show a novel method, developed in [7], to decide for
i ≤ |V (G)| whether the i-th critical ideal of Gd is trivial or not.

For V ′ ⊆ V (G) and d ∈ ZV ′ , we define φ(d) as follows:

φ(d)v =

{
0 if dv > 0,

−1 if dv < 0.

A simpler version of Theorem 3.9 is restated as follows.

Theorem 2.30. Let n ≥ 2 and G be a graph with n vertices. For V ′ ⊆ V (G), 1 ≤ j ≤ n
and d ∈ ZV ′, the critical ideal Ij(G

d, XGd) is trivial if and only if the evaluation of Ij(G,XG) at
XG = φ(d) is trivial.

Thus the procedure of verifying whether a family of graphs belongs to Γ≤i becomes in evaluation
of the i-th critical ideal of the underlying graph of the family.

Let G2 be the underlying graph of the family of graphs F1
1 (see Figure 5.ii) with vertex set

V = {v1, v2, v3, v4, v5, v6, v7}. Let d ∈ ZV such that d1,d2,d3 are positive integers and d4,d5,d6,d7

are negative integers. Thus φ(d) = (0, 0, 0,−1,−1,−1,−1). By using a computer algebra system
we can check that

I4(G2, XG2) = 〈2, x1, x2, x3, x4 + 1, x5 + 1, x6 + 1, x7 + 1〉.
Since the evaluation I4(G2, XG2) at XG2 = φ(d) is equal to 〈2〉, then by Theorem 2.30 the critical
ideal I4(Gd

2 , XGd
2
) is non-trivial. Therefore, each graph in this family of graphs has algebraic co-

rank at most 3. Let G3 be the underlying graph of the family of graphs F2
1 (see Figure 5.iii) with

vertex set V = {v1, v2, v3, v4, v5, v6}. Let d1 be positive integer. By using a computer algebra
system we can check that

I4(G3, XG3) = 〈x2
1 + 5x1 + 5, x1 + x2 + 3, x1 + x3 + 3, x1 + x4 + 3, x1 + x5 + 3, x1 + x6 + 3〉.

Since the evaluation of I4(G3, XG3) at x1 = 0 is non-trivial, then by Theorem 2.30 the critical ideal
I4(Gd

3 , XGd
3
) is non-trivial. Therefore, each graph in F2

1 has algebraic co-rank at most 3.

On the other hand, it can be verified that γ(G1), γ(G2) and γ(G3) are equal to 3. Then the
graphs in F1 have algebraic co-rank 3, and so each induced subgraph of a graph in F1 has algebraic
co-rank at the most 3.
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Proposition 2.31. Each graph in F1 (see Figure 5) belongs to Γ≤3.

6. A description of Γ≤3

It is possible to compute the algebraic co-rank of all connected graphs with at most 9 vertices
using the software Macaulay2 [28] and Nauty [36]. The computation of the algebraic co-rank of
the connected graphs with at most 8 vertices required at most 3 hours on a MacBookPro with a
2.8 GHz Intel i7 quad core processor and 16 GB RAM. Besides, the computation of the algebraic
co-rank of the connected graphs with 9 vertices required 4 weeks of computation on the same
computer.

Let F3 be the family of graphs shown in Figure 6. This family represents the graphs in
Forb(Γ≤3) with at most 8 vertices. Since there exists no minimal forbidden graph with 9 vertices
for Γ≤3, then it is likely that F3 = Forb(Γ≤3).

P5 G6,1 G6,2 G6,3 G6,4 G6,5 G6,6 G6,7 G6,8 G6,9

G6,10 G6,11 G6,12 G6,13 G6,14 G6,15 G6,16 G6,17 G6,18 G6,19

G6,20 G6,21 G6,22 G6,23 G6,24 G6,25 G6,26 G6,27 G7,1 G7,2

G7,3 G7,4 G7,5 G7,6 G7,7 G7,8 G7,9 G7,10 G7,11 G7,12

G7,13 G7,14 G7,15 G7,16 G7,17 G8,1 G8,2 G8,3 G8,4

Figure 6. The family of graphs F3. A black vertex represents a clique of cardinality
2, a white vertex represents a stable set of cardinality 2 and a gray vertex represent
a single vertex.

Proposition 2.32. Each graph in F3 belongs to Forb(Γ≤3).

Proof. It can easily checked, using a computer algebra system, that each graph in F3 is
γ-critical and has algebraic co-rank equal to 4. �

One of the main results of this thesis is the following:

Theorem 2.33. If a graph G ∈ Γ≤3 has clique number at most 3, then G is an induced subgraph
of a graph in F1.
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We divide the proof in two characterizations: the graphs in Γ≤3 with clique number equal to 2
and 3. The converse of Theorem 2.33 is stronger, by Proposition 2.31 we have that each induced
subgraph of a graph in F1 belongs to Γ≤3. However, it is not difficult to recognize the graphs in
F1

1 with clique number greater or equal than 4.

Theorem 2.34. Let G be a simple connected graph with ω(G) = 2. Then, G is F3-free if and
only if G is isomorphic to an induced subgraph of a graph in F2 (see Figure 7).

n1 n2 n1 n2 n1 n2 n1 n2

(i) Kn1,n2 (ii) F1
2 (iii) F2

2 (iv) F3
2

Figure 7. The family of graphs F2. A white vertex represents a stable set of
cardinality nv and a gray vertex represents a single vertex.

Since each graph in F2 is isomorphic to an induced subgraph of a graph in F1
1 , then Proposition

2.31 implies that each graph in F2 belongs to Γ≤3. Note that the graphs in Γ≤1 and Γ≤2 are induced
subgraph of a graph in F1

1 (see Figure 5.ii).

Theorem 2.35. Let G be a simple connected graph with ω(G) = 3. Then, G is F3-free if and
only if G is isomorphic to an induced subgraph of a graph in F1 with clique number 3.

Section 7 is devoted to the proof of the Theorem 2.35. Now we give the proof of Theorem 2.34.

Proof of Theorem 2.34. Since each graph in F2 belongs to Γ≤3, then each graph in F2 is
F3-free. Thus, we get one implication.

Suppose G is F3-free. Let a, b ∈ V (G) such that ab ∈ E(G). Since ω(G) = 2, then there is no
vertex adjacent with a and b at the same time. For a vertex v ∈ V (G), the neighbor set NG(v) of
v in G is the set of all vertices adjacent with v. Let A = NG(a)− b and B = NG(b)− a. Clearly,
each of the sets A and B induces a trivial graph. Let us define

A = {u ∈ A : ∃v ∈ B such that uv ∈ E}, A′ = {u ∈ A : @v ∈ B such that uv ∈ E}

B = {u ∈ B : ∃v ∈ A such that uv ∈ E}, and B′ = {u ∈ B : @v ∈ A such that uv ∈ E}.
Thus we have two possible cases: when A and B are not empty and when A and B are empty.

First we consider when A and B are not empty. In this case we have the following
statements:

Claim 2.36. One of the sets A′ or B′ is empty, and the other has cardinality at most one.

Proof. Suppose A′ and B′ are not empty. Let u ∈ A, v ∈ B, s ∈ A′ and t ∈ B′. Then the
vertex set {a, b, u, v, s, t} induces a graph isomorphic to G6,9, which is impossible. Now suppose A′

has cardinality more than 1. Take w1, w2 ∈ A′. Then {x, y, u, v, w1, w2} induces a graph isomorphic
to G6,3; a contradiction. Thus A′ has cardinality at most one. �

Claim 2.37. The edge set E(A,B) induces either a complete bipartite graph or a complete
bipartite graph minus an edge.
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Proof. First note that each vertex in A is incident with each vertex in B, except for at most
one vertex. It is because if u ∈ A and v1, v2, v3 ∈ B such that uv1 ∈ E(G) and uv2, uv3 /∈ E(G),
then the induced subgraph G[{x, y, u, v1, v2, v3}] is isomorphic to G6,3; which is impossible. In a
similar way, each vertex in B is incident with each vertex in A, except for at most one vertex. Thus
the edge set E(A,B) must be equal to the edge set {uv : u ∈ A, v ∈ B} minus a matching. In fact,
the cardinality of this matching must be at most one. Otherwise, if u, v ∈ A and s, t ∈ B such
that us, vt /∈ E(G) and ut, vs ∈ E(G), then the induced subgraph G[{t, u, a, v, s}] is isomorphic to
P5; which is a contradiction. �

Claim 2.38. It is not possible that, at the same time, the edge set E(A,B) induces a complete
bipartite graph minus an edge and A′ ∪B′ 6= ∅.

Proof. Suppose both situations occur at the same time. Let u1, u2 ∈ A and v1, v2 ∈ B
such that u1v1, u1v2, u2v1 ∈ E(G) and u2v2 /∈ E(G). And let w ∈ A′. Then the vertex set
{u1, u2, v1, v2, y, w} induces a graph isomorphic to G6,9; which is a contradiction. �

Thus there are three possible cases:

(a) E(A,B) = {uv : u ∈ A, v ∈ B} and A′ ∪B′ = ∅,
(b) E(A,B) = {uv : u ∈ A, v ∈ B} and A′ = T1, B′ = ∅ or
(c) E(A,B) induces a bipartite complete graph minus an edge and A′ ∪B′ = ∅.

Let V∅ denote the set of vertices that are not adjacent with a nor b. In what follows we will
describe the vertex set V∅.
Case (a). Let w1, w2 ∈ V∅, u1, u2 ∈ A, and v1 ∈ B. Note that it is not possible that a vertex in V∅
is adjacent with a vertex in A and a vertex in B at the same time, because then we get ω(G) ≥ 3.
Moreover

Claim 2.39. There exist no two vertices in V∅ such that one is adjacent with a vertex in A and
the other one is adjacent with a vertex in B.

Proof. Suppose w1u1, w2v1 ∈ E(G). There are two cases: either w1w2 ∈ E(G) or w1w2 /∈
E(G). If w1w2 ∈ E(G), then G[{w1, w2, v1, b, a}] ' P5; which is impossible. And if w1w2 /∈ E(G),
then G[{w1, w2, v1, u1, b, a}] ' G6,9; which is a contradiction. �

Without loss of generality, suppose w1 ∈ V∅ is adjacent with u1 ∈ A. Thus

Claim 2.40. The vertex set V∅ has cardinality at most 1.

Proof. There are two possible cases: either each vertex in V∅ is adjacent with a common
vertex in A or not. Suppose there exists w2 ∈ V∅ such that u1 is adjacent with both w1 and
w2. Then w1w2 /∈ E(G), because otherwise w1, w2 and u1 induce a K3. Thus the vertex set
{w1, w2, u1, v1, a, b} induces a graph isomorphic to G6,3; which is forbidden. Then this case is not
possible. Now suppose w1 and w2 are not adjacent with a common vertex in A. We have the
following possible cases:

(1) w1u1, w2u2 ∈ E(G),
(2) w1u1, w2u2, w1w2 ∈ E(G), or
(3) w1w2 ∈ E(G).

This yields a contradiction since in case (1) the vertex set {w1, u1, v1, u2, w2} induces a graph
isomorphic to P5, in case (2) the vertex set {w2, w1, u1, v1, b} induces a graph isomorphic to P5,
and in case (3) the vertex set {w2, w1, u1, v1, b} induces a graph isomorphic to P5. �
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If |A| = 2, there are two possibilities: either w1 is adjacent with each vertex in A or w1 is
adjacent with only one vertex of A. If |A| ≥ 3, then w1 is adjacent with either all vertex in A or
only one vertex in A. It is because if w1 is adjacent with both u1, u2 ∈ A and w is not adjacent
with u3 ∈ A, then the vertex set {w1, u1, u2, u3, a, b} induces a graph isomorphic to G6,3. Note that
when w1 is adjacent with each vertex in A, then the graph is isomorphic to an induced subgraph
of a graph in F2

2 . Meanwhile, when w1 is adjacent only with one vertex of A, then the graph is
isomorphic to an induced subgraph of a graph in F1

2 . Finally, when V∅ = ∅, the graph is a complete
bipartite graph.
Case (b). Suppose without loss of generality that A′ 6= ∅. By Claims 2.39 and 2.40, the vertex set
V∅ has cardinality at most one. Let w ∈ V∅, u1 ∈ A, u2 ∈ A′ and v1 ∈ B. We have two cases: w
is adjacent with either a vertex in A or a vertex in B. Let us consider when w is adjacent with a
vertex in A. Here we have two possibilities: either wu2 ∈ E(G) or wu2 /∈ E(G). However, none of
the two cases is allowed, since in the first case we get that the vertex set {w, u2, a, b, v1} induces a
graph isomorphic to P5, and in the second case the vertex set {w, u2, a, b, u1, v1} induces a graph
isomorphic to G6,9. Thus the remaining case is that w is adjacent with a vertex in B. In this
case w must be adjacent with u2 and each vertex in B, because otherwise the graph P5 appears as
induced subgraph. Note that this graph is isomorphic to an induced subgraph of a graph in F3

2 .
Case(c). Let w ∈ V∅, u1, u2 ∈ A, and v1, v2 ∈ B such that u1v2 /∈ E(G) and u1v1, u2v1, u2v2 ∈
E(G). Note that if w is adjacent with u1 or v2, then w is adjacent with both u1 and v2, because
since u1v2 /∈ E(G), we would obtain P5 as induced subgraph; which is not possible. In this case,
when w is adjacent with u1 and v2, the graph is isomorphic to an induced subgraph of F3

2 . Now
we consider when w is adjacent with a vertex in (A−u1)∪ (B−v2). Without loss of generality, we
can suppose w is adjacent with u2. The vertex w is not adjacent with v1 or v2, because otherwise a
clique of cardinality 3 is obtained. On the other hand, w is not adjacent with u1, because otherwise
w would be adjacent with both vertices u1 and v1. Thus w is adjacent only with u2, but the vertex
set {w, u1, u2, v2, a, b, } induces a graph isomorphic to G6,9; a contradiction. Thus V∅ is empty, and
the graph is isomorphic to an induced subgraph of F2

2 .
Now we consider the case when A and B are empty. One of the vertex sets A′ or B′ has

cardinality at most one, because otherwise A′∪B′∪{a, b} would contain G6,1 as induced subgraph.
Thus, let us assume that A′ = {u} and |B′| > 1. Let V∅ denote the vertex set whose vertices are
not adjacent with both a and b.

Claim 2.41. If A′ and B′ are not empty, and w ∈ V∅ is adjacent with a vertex in A′ ∪B′, then
w is adjacent with each vertex in A′ ∪B′.

Proof. Let v ∈ B′. Suppose one of the edges uw or vw does not exist. Then {w, u, a, b, v}
induces a graph isomorphic to P5; which is a contradiction. �

Note that the vertex set V∅ induces a stable set, because otherwise ω(G) > 2. Thus when A′

and B′ are not empty, the graph G is isomorphic to an induced subgraph of a graph in F3
2 .

Now consider the case when B = ∅ and |A| > 1.

Claim 2.42. Each vertex w ∈ V∅ is adjacent with either a unique vertex in A or each vertex in
A.

Proof. The result is easy to check when |A| ≤ 2. So suppose A has cardinality greater or
equal than 3. Let u1, u2, u3 ∈ A such that w is adjacent with both u1, u2, and w is not adjacent
with u3. Since the vertex set {w, u1, u2, u3, a, b} induces a graph isomorphic to G6,3, then we get a
contradiction and the result follows. �
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Claim 2.43. Let w ∈ V∅ such that it is adjacent with u ∈ A. If V∅ has cardinality greater than
1, then each vertex in V∅ is adjacent either with u or with each vertex in A.

Proof. Suppose there exists w′ ∈ V∅ such that w′ is not adjacent with u. Let u′ ∈ A such
that w′ is adjacent with w′. There are four possible cases:

• wu′, ww′ ∈ E(G),
• ww′ ∈ E(G) and wu′ /∈ E(G),
• wu′ ∈ E(G) and ww′ /∈ E(G),
• wu′, ww′ /∈ E(G).

In the cases when ww′ ∈ E(G), the vertex set {w, u, a, u′, w′} induces a graph isomorphic to P5;
those cases do not occur. On the other hand if wu′ ∈ E(G) and ww′ /∈ E(G), then {w,w′, u, u′, a, b}
induces a graph isomorphic to G6,9, and this case can not occur. Finally, if wu′, ww′ /∈ E(G), then
the vertex set {w, u, a, u′, w′} induces a graph isomorphic to P5. Which is a contradiction. Thus
each pair of vertices in V∅ are adjacent with the same vertices in A. And the result follows. �

Thus there are two cases: when each vertex in V∅ is adjacent with a unique vertex u in A,
and when each vertex in V∅ is adjacent with each vertex in A. Note that V∅ induces a stable set,
because otherwise ω(G) > 2. In the first case we have that either |V∅| ≥ 2 or the vertex set A− u
is empty. It is because otherwise G would have G6,1 as induced subgraph. Therefore, in each case
G is isomorphic to a graph in F1

1 . �

7. Proof of Theorem 2.35

One implication is easy because Proposition 2.31 implies that each graph in F1 is F3-free. The
other implication is much more complex.

Suppose G is F3-free. Let W = {a, b, c} be a clique of cardinality 3. For each X ⊆ {a, b, c}, let
VX = {u ∈ V (G) : NG(u) ∩ {a, b, c} = X}. Note that V∅ denote the vertex set whose vertices are
not adjacent with a vertex in {a, b, c}.

Since ω(G) = 3, then the vertex set Va,b,c is empty, and for each pair {x, y} ⊂ {a, b, c}, the
vertex set Vx,y induces a stable set. Furthermore

Claim 2.44. For x ∈ {a, b, c}, the induced subgraph G[Vx] is isomorphic to either Km,n, 2K2,
K2 +K1, or Tn.

Proof. First consider K3, P4, K2 + T2 and P3 + T1 as induced subgraphs of G[Vx]. Since
G[K3 ∪ x] ' K4, G[P4 ∪ {x, y}] ' G6,12, G[K2 + T2 ∪ {a, b, c}] ' G7,1, G[P3 + T1 ∪ {x, y}] ' G6,4

and all of them are forbidden for G, then the graphs K3, P4, K2 + T2 and P3 + T1 are forbidden
in G[Vx]. Thus ω(G[Vx]) ≤ 2.

If ω(G[Vx]) = 2, then there exist u, v ∈ Vx such that uv ∈ E(G[Vx]). Clearly, NG[Vx](u) ∩
NG[Vx](v) = ∅, and each vertex set NG[Vx](u) and NG[Vx](u) induces a trivial subgraph. Since G[Vx]
is P4-free, then st ∈ E(Vx) for all s ∈ NVx(u)\{v} and t ∈ NVx(v)\{u}. Therefore, each component
in G[Vx] is a complete bipartite subgraph.

If a component in G[Vx] has cardinality at least three, then G[Vx] does not have another
component, because the existence of another component makes that P3 +T1 appears as an induced
subgraph in G[Vx]; which is impossible. If there is a component in G[Vx] of cardinality at least
two, then there is at most another component in G[Vx] since K2 + T2 is forbidden in G[Vx]. And
thus the result turns out. �
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Claim 2.45. If there is x ∈ {a, b, c} such that the induced subgraph G[Vx] has at least 2 com-
ponents or is isomorphic to a complete bipartite with at least three vertices, then the vertex set Vy
is empty for each y ∈ {a, b, c} − x.

Proof. Let G[Vx] be as above. Then there are two vertices u, v ∈ Vx that are not adjacent.
Suppose Vy is not empty, that is, there is w ∈ Vy. There are three possibilities:

• uw, vw ∈ E(G),
• uw ∈ E(G) and vw /∈ E(G), and
• uw, vw /∈ E(G).

But in each case the vertex set {a, b, c, u, v, w} induces a graph isomorphic to G6,15, G6,11, and
G6,2, respectively. Since these graphs are forbidden, then we obtain a contradiction and then Vy is
empty. �

Claim 2.46. If there is x ∈ {a, b, c} such that G[Vx] has at least 2 components or is isomorphic
to a complete bipartite with at least three vertices, then the vertex set Vx,y is empty for each
y ∈ {a, b, c} − x.

Proof. Let G[Vx] be as above. Then there are two vertices u1, u2 ∈ Vx that are not adjacent.
Suppose Vx,y 6= ∅. Let v ∈ Vx,y. There are three possibilities:

• u1v ∈ E(G) and u2v ∈ E(G),
• u1v ∈ E(G) and u2v /∈ E(G), and
• u1v /∈ E(G) and u2v /∈ E(G).

Then in each case, G[{a, b, c, u1, u2, v}] is isomorphic to G6,16, G6,12 and G6,4, respectively. Since
these graphs are forbidden, we have that Vx,y is empty. �

Remark 2.47. Claims 2.45 and 2.46 imply that when Vx has connected 2 components or is a
complete bipartite graph of at least 3 vertices, then the only non-empty vertex sets are V∅, Vx and
Vy,z, where x, y and z are different elements of {a, b, c} Moreover, by Claim 2.44, the vertex set Vx
is one of the following vertex sets:

• Tn, where n ≥ 2,
• complete bipartite graph with cardinality at least 3,
• K1 +K2 or 2K2.

Next result describes the induced subgraph G[Va ∪ Vb ∪ Vc] when each set Vx is connected of
cardinality at most 2.

Claim 2.48. Suppose for each x ∈ {a, b, c} the vertex set Vx is connected of cardinality at most
2. If for all x ∈ {a, b, c} the set Vx is not empty, then G[Va ∪ Vb ∪ Vc] is isomorphic (where x, y
and z are different elements of {a, b, c}) to one of the following sets:

• Vx ∨ (Vy + Vz) where Vx = K1, Vy = Km, Vz = Kn and m,n ∈ {1, 2},
• Vx ∨ (Vy + Vz) where Vx = K2, Vy = K1, Vz = K1, or
• Vx ∨ (Vy ∨ Vz) where Vx = K1, Vy = K1, Vz = K1.

If Vz = ∅, then G[Vx ∪ Vy] is isomorphic to one of the following sets:

• Vx + Vy, where Vx = Km, Vy = Kn and m,n ∈ {1, 2}, or
• Vx ∨ Vy, where Vx = K1, Vy = Km and m ∈ {1, 2}.

If Vy = Vz = ∅, then Vx is isomorphic to K1 or K2.
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Proof. It is not difficult to prove that either E(Vx, Vy) is empty or E(Vx, Vy) induces a com-
plete bipartite graph. The result follows by checking the possibilities with a computer algebra
system. �

In the rest of the proof, for each case obtained in Remark 2.47 and Claim 2.48, we will analyze
the remaining edges sets and the vertex set V∅. As before, we may refer to x, y or z as different
elements of {a, b, c}. Each case will be consider in a subsection.

7.0.1. When Va ∪ Vb ∪ Vc = ∅. Now we describe the induced subgraph G[Va,b ∪ Va,c ∪ Vb,c].

Claim 2.49. If the vertex sets Vx,y and Vy,z are not empty, and the edge set E(Vx,y, Vy,z) is
empty, then |Vx,y| = |Vy,z| = 1.

Proof. Suppose |Vx,y| ≥ 2 and Vy,z 6= ∅. Take u, u′ ∈ Vx,y and v ∈ Vy,z. The result follows
since the vertex set {a, b, c, u, u′, v} induces a graph isomorphic to the forbidden graph G6,16. �

Claim 2.50. If E(Vx,y, Vy,z) 6= ∅, E(Vx,y, Vx,z) = ∅ and E(Vy,z, Vx,z) = ∅, then Vx,z is empty.

Proof. Let u ∈ Vx,y and v ∈ Vy,z such that uv ∈ E(G). Suppose there exists w ∈ Vx,z. Then
uw, vw /∈ E(G). Since the induced subgraph G[{a, b, c, u, w, v}] is isomorphic to G6,24, then we get
a contradiction. Then Vx,z is empty. �

Claim 2.51. If E(Vx,y, Vy,z) 6= ∅, then E(Vx,y, Vy,z) induces either a complete bipartite graph or
a complete bipartite graph minus an edge.

Proof. Let u ∈ Vx,y. Suppose there exist v, v′ ∈ Vy,z such that uv, uv′ /∈ E(G). Since the
induced subgraph G[{a, b, c, u, v, v′}] is isomorphic to G6,16, which is forbidden, then the vertex u
is adjacent with at least all but one vertices in Vy,z. In a similar way, we have that each vertex in
Vy,z is adjacent with at at least all but one vertices in Vx,y. Therefore, the edge set E(Vx,y, Vy,z)
induces a complete bipartite graph minus a matching. Now suppose this matching has cardinality
greater or equal to 2. Then there exist u, u′ ∈ Vx,y and v, v′ ∈ Vy,z such that uv′, u′v /∈ E(G) and
uv, u′v′ ∈ E(G). Since G[{v, u, x, u′, v′}] is isomorphic to P5, then we get a contradiction and the
matching has cardinality at most 1. Therefore, E(Vxy, Vy,z) induces a complete bipartite graph or
a complete bipartite graph minus an edge. �

Claim 2.52. If E(Vx,y, Vy,z) 6= ∅, E(Vy,z, Vx,z) 6= ∅ and E(Vx,y, Vx,z) = ∅, then Vx,y = {v1},
Vx,z = {v2} and one of the following two statements holds:

• E(v1, Vy,z) = {v1v : v ∈ Vy,z} and E(v2, Vy,z) = {v2v : v ∈ Vy,z}, or
• there exists v3 ∈ Vy,z such that E(v1, Vy,z) = {v1v : v ∈ Vy,z − v3} and E(v2, Vy,z) = {v2v :
v ∈ Vy,z − v3}.

Proof. Since there is no edge joining a vertex in Vx,y and a vertex in Vx,z, then Claim 2.49
implies that |Vx,y| = |Vx,z| = 1. Let Vx,y = {v1} and Vx,z = {v2}. By Claim 2.51, each edge set
E(Vx,y, Vy,z) and E(Vy,z, Vx,z) induces either a complete bipartite graph or a complete bipartite
graph minus an edge. If both sets E(Vx,y, Vy,z) and E(Vy,z, Vx,z) induce either a complete bipartite
graph, then we are done. So it remains to check two cases:

• when one edge set induces a complete bipartite graph and the other one induces a complete
bipartite graph minus an edge, and
• when both edge sets induce a complete bipartite graph minus an edge.

First consider the former case. Suppose there exists v3 ∈ Vy,z such that E(v1, Vy,z) = {v1v :
v ∈ Vy,z − v3} and E(v2, Vy,z) = {v2v : v ∈ Vy,z}. Since G[{a, b, c, v1, v2, v3}] is isomorphic to
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G6,24, then this case is not possible. Now consider second case. Let v3, v4 ∈ Vy,z. There are two
possible cases: either v1v3, v2v3 /∈ E(G), or v1v3, v2v4 /∈ E(G). Suppose v1v3, v2v4 /∈ E(G). Since
G[{v4, v1, z, v2, v3}] is isomorphic to P5, then this case is impossible. And therefore v1v3, v2v3 /∈
E(G). �

Claim 2.53. If each edge set E(Vx,y, Vy,z) is not empty, then the induced subgraph G[Va,b ∪
Va,c ∪ Vb,c] is isomorphic to one of the following graphs:

• a complete tripartite graph,
• a complete tripartite graph minus an edge, or
• a complete tripartite graph minus the edges v1v2, v2v3, v3v1, where v1 ∈ Vx,y, v2 ∈ Vy,z,
v3 ∈ Vx,z.

Proof. By Claim 2.51, the induced subgraph G[Va,b∪Va,c∪Vb,c] is a complete tripartite graph
minus at most three edges. We will analyze the cases where 2 or 3 edges have been removed.

Suppose G[Va,b∪Va,c∪Vb,c] induces a complete tripartite graph minus 2 edges. Since E(Vx,y, Vy,z)
induces complete bipartite graph or complete bipartite graph minus an edge, then the 2 edges
cannot be removed from a unique edge set E(Vx,y, Vy,z). Then there are two possibilities:

• there exist u, u′ ∈ Vx,y, v ∈ Vy,z and w ∈ Vx,z such that uv, u′w /∈ E(G), or
• there exist u ∈ Vxy, v ∈ Vy,z and w ∈ Vx,z such that uv, uw /∈ E(G).

In the first case the graph induced by the set {x, v, u, u′, w, z} is isomorphic to the forbidden graph
G6,17; which is impossible. And in the second case, the induced subgraph G[{a, b, c, u, v, w}] is
isomorphic to G6,13, which is impossible. Thus the case where 2 edges are removed from G[Va,b ∪
Va,c ∪ Vb,c] is not possible.

Suppose G[Va,b ∪ Va,c ∪ Vb,c] is a complete tripartite graph minus 3 edges. Since E(Vx,y, Vy,z)
induces a complete bipartite graph or a complete bipartite graph minus an edge, then the 3 edges
cannot be removed from a unique edge set E(Vx,y, Vy,z). Thus there are four possible cases:

(a) v1v4, v3v6, v5v2 /∈ E(G), where v1, v2 ∈ Vx,y, v3, v4 ∈ Vy,z and v5, v6 ∈ Vx,z
(b) v1v3, v2v5, v5v4 /∈ E(G), where v1, v2 ∈ Vx,y, v3, v4 ∈ Vy,z and v5 ∈ Vx,z
(c) v2v4, v4v5, v5v2 /∈ E(G), where v1, v2 ∈ Vx,y, v3, v4 ∈ Vy,z and v5 ∈ Vx,z and
(d) v1v3, v3v5, v5v2 /∈ E(G), where v1, v2 ∈ Vx,y, v3, v4 ∈ Vy,z and v5 ∈ Vx,z.
Cases (a), (b) and (d) are impossible, the argument is the following. Case (a) is impossible because
the induced subgraph G[{v2, v3, v5, v6, x, y}] is isomorphic to the forbidden graph G6,17. In case (b),
the induced subgraph G[{v2, v5, v4, a, b, c}] is isomorphic to the forbidden graph G6,24. And in case
(d), the induced subgraph G[{v2, v3, v5, a, b, c}] is isomorphic to the forbidden graph G6,24. Thus
when 3 edges are removed the only possible case is (c). �

By previous Claims we have the following cases:

(1) when the set Vx,y is the only not empty set,
(2) when Vx,z = ∅, Vx,y = {vxy}, Vy,z = {vyz} and vxyvyz /∈ E(G),
(3) when Vx,z = ∅ and E(Vx,y, Vy,z) induces a bipartite complete graph,
(4) when Vx,z = ∅ and E(Vx,y, Vy,z) induces a bipartite complete graph minus an edge,
(5) when Va,b = {vab}, Va,c = {vac}, Vb,c = {vbc} and vabvac, vabvbc, vacvbc /∈ E(G),
(6) when Vx,z = {vxz}, Vy,z = {vyz}, vxzvyz /∈ E(G), and the edge sets E(vxz, Vx,y) and

E(vyz, Vx,y) induce a complete bipartite graph,
(7) when Vx,z = {vxz}, Vy,z = {vyz}, vxzvyz /∈ E(G), and there exists vxy ∈ Vx,y such that

E(vxz, Vx,y) = {vxzv : v ∈ Vx,y − vxy} and E(vyz, Vx,y) = {vyzv : v ∈ Vx,y − vxy}.
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(8) when G[Va,b ∪ Va,c ∪ Vb,c] is isomorphic to a complete tripartite graph,
(9) when G[Va,b ∪ Va,c ∪ Vb,c] is isomorphic to a complete tripartite graph minus an edge,

(10) when G[Va,b ∪ Va,c ∪ Vb,c] is isomorphic to a complete tripartite graph, where v1 ∈ Vx,y,
v2 ∈ Vy,z, v3 ∈ Vx,z and v1v2, v2v3, v3v1 /∈ E(G).

Now we describe the vertex set V∅.

Remark 2.54. Let w,w′ ∈ V∅. Suppose w is adjacent with a vertex in Vx,y and with w′. Then
the vertex w′ is adjacent with a vertex in Vx,y, because otherwise the shortest path from w′ to z
would contains a graph isomorphic to P5. Thus each vertex in V∅ is adjacent with a vertex in Vx,y
for some {x, y} ⊂ {a, b, c}.

Claim 2.55. If w ∈ V∅ is adjacent with v ∈ Vx,y, then either w is adjacent only with v and with
no other vertex in Vx,y, or w is adjacent with each vertex in Vx,y. Moreover, if each vertex in V∅
is adjacent with a vertex in Vx,y, then either exists a vertex v ∈ Vv,x such that each vertex in V∅ is
adjacent with v, or each vertex in V∅ is adjacent with each vertex in Vx,y.

Proof. Since the first statement is easy when Vx,y has cardinality at most 2, then we assume
that Vx,y has cardinality at least 3. Let v′, v′′ ∈ Vx,y. Suppose w is adjacent with v and v′ but
not adjacent with v′′. Since G[{x, z, v, v′, v′′, w}] is isomorphic to G6,3, then we get a contradiction.
And then w is adjacent only with v or with v, v′ and v′′.

Let w,w′ ∈ V∅. Suppose there is v ∈ Vx,y such that wv ∈ E(G) and w′v /∈ E(G). The vertex
w is not adjacent with w′, because otherwise by Remark 2.54 we get a contradiction. Let v′ ∈ Vx,y
such that w′ is adjacent with w′. Thus there are two possible cases:

• ww′, wv′ /∈ E(G), and
• wv′ ∈ E(G) and ww′ /∈ E(G).

Since in the first caseG[{w, v, x, v′, w′}] is isomorphic to P5 and in the second caseG[{x, z, v, v′, w, w′}]
is isomorphic to G6,9, then we get a contradiction and thus there is no vertex in Vx,y adjacent with
a vertex in V∅ and not adjacent with other vertex in V∅. �

Claim 2.56. Let v ∈ Vx,y. If each vertex in V∅ is adjacent with v, then V∅ induces either K2

or it is a trivial graph. If furthermore there exists v′ ∈ Vx,y such that no vertex in V∅ is adjacent
with v′, then V∅ is a clique of cardinality at most 2.

Proof. First note that P3 is forbidden as induced subgraph in G[V∅]. It is because if the
vertices w1, w2, w3 ∈ V∅ induce a graph isomorphic to P3, then G[{x, y, v, w1, w2, w3}] ' G6,7. Now
we will see that each component in G[V∅] is a clique. Let C be a component in G[V∅]. Suppose
C is not a clique, then there are two vertices not adjacent in C, say w and w′. Let P be the
smallest path contained in C between w and w′. The length of P is greater or equal to 3. So
P3 is an induced subgraph of P , and hence of C. Which is a contradiction, and therefore, C is a
clique. On the other hand, the graph K2 + K1 is forbidden as induced subgraph in G[V∅]. It is
because if w1, w2, w3 ∈ V∅ such that G[{w1, w2, w3}] ' K2 +K1, then G[{x, y, v, w1, w2, w3}] ' G6,8.
Therefore, if G[V∅] has more than one component, then each component has cardinality one.

Let v, v′ ∈ Vx,y such that each vertex in V∅ is adjacent with v, and no vertex in V∅ is adjacent
with v′. Suppose V∅ induces a stable set of cardinality at least 2. Take w,w′ ∈ V∅. Then we get
a contradiction since the induced graph G[{w,w′, v, v′, x, z}] is isomorphic to G6,1. Thus V∅ is a
clique of cardinality at most 2. �

Thus by Claims 2.55 and 2.56, in case (1) we have the following possible cases:
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• V∅ is a clique of cardinality at most 2, and each vertex in V∅ is adjacent with only one
vertex in Vx,y, and
• V∅ is a trivial graph and E(V∅, Vx,y) induces a complete bipartite graph.

Note that these graphs are isomorphic to an induced subgraph of a graph in F1
1 .

Claim 2.57. If E(Vx,y, Vy,z) = ∅ and E(V∅, Vx,y ∪Vy,z) 6= ∅, then V∅ is a clique of cardinality at
most 2, and each vertex in V∅ is adjacent each vertex in Vx,y ∪ Vy,z

Proof. Let vxy ∈ Vx,y, vyz ∈ Vy,z such that vxyvyz /∈ E(G). It is easy to see that if w is adjacent
with vxy or vyz, then w is adjacent with both vertices, because otherwise G has an induced subgraph
isomorphic to P5. Thus each vertex in V∅ is adjacent with each vertex in Vx,y ∪ Vy,z. Now suppose
w,w′ ∈ V∅ such that w and w′ are not adjacent. Since the induced subgraph G[{w,w′, x, y, vxy, vyz}]
is isomorphic to G6,15, then we get a contradiction and V∅ induces a clique of cardinality at most
2. �

By previous Claim we get that in case (2), V∅ is a clique of cardinality at most 2 and each
vertex in V∅ is adjacent each vertex in Vx,y∪Vy,z. This graph is isomorphic to an induced subgraph
of a graph in F1

1 .

Claim 2.58. If the edge set E(Vx,y, Vy,z) induces a complete bipartite graph and E(V∅, Vx,y ∪
Vy,z) 6= ∅, then V∅ is a clique of cardinality at most 2, and each vertex in V∅ is adjacent only to
one vertex in Vx,y ∪ Vy,z.

Proof. First we prove that there each vertex in V∅ is adjacent with a vertex in only one of the
sets Vx,y or Vy,z. Suppose there exists a vertex w ∈ V∅ adjacent with v ∈ Vx,y and u ∈ Vy,z. Since
the induced subgraph G[{w, a, b, c, v, u}] is isomorphic to G6,24, then we get a contradiction and
each vertex in V∅ is adjacent only with vertices of one of the vertex sets Vx,y or Vy,z. Suppose there
are two vertices w,w′ ∈ V∅ such that w is adjacent with v ∈ Vx,y, and w′ is adjacent with u ∈ Vy,z.
Since G[{w,w′, u, v, x, z}] is isomorphic to G6,9, then this is impossible and the vertices of V∅ are
adjacent only to vertices in one of the vertex sets either Vx,y or Vy,z. Now suppose that w ∈ V∅ is
adjacent with two vertices in Vx,y, say v and v′. Take u ∈ Vy,z. So u is adjacent with both v and v′.
Since the induced subgraph G[{w, v, v′, u, a, b, c}] is isomorphic to G7,10, then this cannot occur.
Thus each vertex in V∅ is adjacent only with one vertex in Vx,y ∪ Vy,z. Finally suppose V∅ induces
a trivial graph of cardinality at least 2. Let w,w′ ∈ V∅ adjacent with v ∈ Vx,y. Take u ∈ Vy,z, so u
is adjacent with both v. Since the induced subgraph G[{w,w, v, u, x, z}] is isomorphic to G6,6, we
get a contradiction and the result follows. �

By previous Claim we have that in case (3) the vertex set V∅ induces a clique of cardinality at
most 2 and each vertex in V∅ is adjacent only to one vertex in Vx,y ∪ Vy,z. In this case, the graph
is isomorphic to an induced subgraph of a graph in F1

1 .

Claim 2.59. Let u ∈ Vx,y and v, v′ ∈ Vy,z such that u is adjacent with v but not with v′. If
w ∈ V∅, then w is not adjacent with v.

Proof. Suppose w is adjacent with v. Note that if w is adjacent with u or v′, then w is
adjacent with both u and v′. Thus there are two cases: either w is adjacent only with v, or w is
adjacent with v, v′ and u. Both cases are impossible because in the former case G[{x, z, u, v, v′, w}]
is isomorphic to G6,9, meanwhile in the second case G[{y, z, u, v, v′, w}] is isomorphic to G6,17; which
is a contradiction. �
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Consider case (4). Let u ∈ Vx,y and v ∈ Vy,z such that u is not adjacent with v. By Claim 2.59,
each vertex in V∅ is adjacent with u or with v. It is not difficult to see that in fact each vertex in
V∅ is adjacent with both u and v, because otherwise G would contain P5 as induced subgraph. By
applying Claim 2.57 to the induced subgraph G[{u, v}∪V∅], we get that V∅ is a clique of cardinality
at most 2. And this graph is isomorphic to an induced subgraph of a graph in F1

1 .
Now consider case (5), by Claim 2.57, we get that V∅ is a clique of cardinality at most 2, and

each vertex in V∅ is adjacent each vertex in Va,b ∪ Vb,c ∪ Va,c. And this graph is isomorphic to an
induced subgraph of a graph in F1

1 .

Claim 2.60. Let u1 ∈ Vx,y, u2 ∈ Vy,z and u3 ∈ Vx,z such that u1 is adjacent with both u2 and
u3, and u2u3 /∈ E(G). If w ∈ V∅, then w is not adjacent with u1.

Proof. Suppose w is adjacent with u1. Note that if w is adjacent with u2 or u3, then w
is adjacent with both u2 and u3. Thus there are two cases: either w is adjacent only with
u1, or w is adjacent with u1, u2 and u3. Both cases are impossible because in the former case
G[{x, y, u1, u2, u3, w}] is isomorphic to G6,12, meanwhile in the second case G[{x, z, u1, u2, u3, w}]
is isomorphic to G6,25; which is a contradiction. �

Consider the Cases (6) and (9). Let vxz ∈ Vx,z and vyz ∈ Vy,z such that vxz is not adjacent with
vyz. By Claims 2.57 and 2.60, each vertex in V∅ is adjacent only with both vxz and vyz. And by
Claim 2.57, we get that V∅ is a clique of cardinality at most 2. And these graphs are isomorphic
to an induced subgraph of a graph in F1

1 .
Now consider the Case (7) and (10). Let vxy ∈ Vx,y, vxz ∈ Vx,z and vyz ∈ Vy,z such that vxy is

not adjacent with vxz and vyz, and vxz is not adjacent with vyz. By Claims 2.60 and 2.57, each
vertex in V∅ is adjacent only with vxy, vxz and vyz. And by Claim 2.57, we get that V∅ is a clique of
cardinality at most 2. And these graphs are isomorphic to an induced subgraph of a graph in F1

1 .
Finally in the case (8), by Claim 2.58 we have that the vertex set V∅ is a clique of cardinality

at most 2 and each vertex in V∅ is adjacent with only one vertex in Va,b ∪ Vb,c ∪ Va,c. This case
corresponds to a graph that is isomorphic to an induced subgraph of a graph in F1

1 .
7.0.2. Case Vx = Tn, where n ≥ 2. First we will obtain that E(Vx, Vy,z) satisfies one of the

following statements:

• it induces a complete bipartite graph,
• there exists a vertex s ∈ Vx, we called the apex, such that E(Vx, Vy,z) = {uv : u ∈
Vx − s and v ∈ Vy,z}, or
• there exists a vertex s ∈ Vy,z, we called the apex, such that E(Vx, Vy,z) = {uv : u ∈
Vx and v ∈ Vy,z − s}.

To do it, we will prove the following claims.

Claim 2.61. Let u1, u2 ∈ Vx and v1, v2 ∈ Vy,z such that u1v1, u2v2 /∈ E(G). Then either u1 = u2

or v1 = v2.

Proof. Suppose u1 6= u2 and v1 6= v2. There are three possible cases:

• u1v2, u2v1 /∈ E(G),
• u1v2 /∈ E(G) and u2v1 ∈ E(G), or
• u1v2, u2v1 ∈ E(G).

The first two cases are not possible since the induced subgraph G[{x, y, u1, u2, v1, v2}] would be
isomorphic to G6,1 and G6,9, respectively. In the last case, the induced subgraph G[{x, u1, u2, v1, v2}]
is isomorphic to P5; which is impossible. Thus the result follows. �
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The last claim implies that all non-edges in E(Vx, Vy,z) are incident to a one vertex: the apex
s.

Suppose the vertex s is in Vx, and there are vertices v1, v2 ∈ Vy,z such that sv1 ∈ E(G), and
sv2 /∈ E(G). By Claim 2.61, each vertex in Vx − s is adjacent with v1 and v2. Then the induced
subgraph G[{a, b, c, u1, u2, v1, v2}] ' G7,9, that is impossible. This implies that if the vertex s ∈ Vx
is not adjacent with a vertex in Vy,z, then s is not adjacent with all vertices in Vy,z. A similar
argument yields that if the apex vertex s is in Vy,z and s is not adjacent with a vertex in Vx, then
s is not adjacent with all vertices in Vx.

Thus, we have three cases:

(a) E(Vx, Vy,z) is complete bipartite minus the edges between a vertex s (the apex) in Vx and all
vertices of Vy,z,

(b) E(Vx, Vy,z) is complete bipartite minus the edges between a vertex s (the apex) in Vy,z and all
vertices in Vx, and

(c) E(Vx, Vy,z) is complete bipartite.

Claim 2.62. If |Vx| ≥ 3 and v ∈ Vy,z, then E(v, Vx) either it induces a complete bipartite graph
or it is empty.

Proof. Let u1, u2, u3 ∈ Vx. Suppose one of the two following possibilities happen: vu1 ∈ E(G)
and vu2, vu3 /∈ E(G) , or vu1, vu2 ∈ E(G) and vu3 /∈ E(G). In the first case the induced subgraph
G[{u1, u2, u3, v, x, y}] is isomorphic to G6,3, meanwhile in the second case the induced subgraph
G[{u1, u2, u3, v, x, y, z}] is isomorphic to G7,2. Then both cases cannot occur, and we get the
result. �

Thus case (a) occur only when |Vx| = 2.
In what follows we describe the vertex set V∅, that is, the vertex set whose vertices have no

edge in common with the vertex set {a, b, c}.
Remark 2.63. Let w ∈ V∅. The vertex w is adjacent with a vertex in Vx ∪ Vy,z, because

otherwise the shortest path from w to {a, b, c} would contains the graph P5 as induced subgraph. Let
u1, u2 ∈ Vx. If w is adjacent with u1 or u2, then w is adjacent with both vertices, because otherwise
the induced subgraph G[{a, b, c, u1, u2, w}] would be isomorphic to G6,6, which is forbidden.

In case (a), we will see that each vertex in V∅ is adjacent with each vertex in Vx ∪ Vy,z. Let
w in V∅. Supppose s ∈ Vx is the vertex that is not adjacent with any vertex in Vy,z. If w ∈ V∅
is adjacent with one of the vertices in {s} ∪ Vy,z, then w must to be adjacent with s and each
vertex in Vy,z, because otherwise let v ∈ Vy,z, then the induced subgraph G[{x, y, s, w, v}] would
be isomorphic to P5. Then by Remark 2.63, w is adjacent with each vertex in Vx ∪ Vy,z.

Claim 2.64. The vertex set V∅ induces a stable set.

Proof. Suppose w1, w2 ∈ V∅ are adjacent. Since both w1 and w2 are adjacent with u ∈ Vx− s
and v ∈ Vy,z, then the induced subgraph G[{u, v, w1, w2}] is isomorphic to K4; which is forbidden.
Thus w1 and w2 are not adjacent, and therefore V∅ is a stable set. �

Thus this case corresponds to a graph that is isomorphic to an induced subgraph of a graph in
F1

1 .
Now consider case (b). Let u1, u2 ∈ Vx and s ∈ Vy,z such that s is not adjacent with u1 and u2.

Claim 2.65. If w ∈ V∅ is adjacent with a vertex in Vy,z \{s}, then each vertex in V∅ is adjacent
with each vertex in Vx ∪ Vy,z.
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Proof. Let w ∈ V∅. Suppose w is adjacent with v ∈ Vy,z \ {s}. If w is not adjacent with both
vertices u1, u2 ∈ Vx, then we get that the induced subgraph G[{a, b, c, w, u1, u2, v}] is isomorphic
to G7,2, which cannot be. Thus w is adjacent with at least one vertex in Vx. Then by Remark 2.63,
w is adjacent with both vertices u1 and u2. If there exist v′ ∈ Vy,z \{s} such that w is not adjacent
with v′, then the vertex set {w, u1, x, y, v, v

′} would induce a graph isomorphic to G6,15. On the
other hand, if w is not adjacent with s, then the vertex set {w, u1, x, y, s} induces the subgraph
P5. Therefore, w is adjacent with each vertex in Vx ∪ Vy,z.

Suppose there is another vertex w′ ∈ V∅. By the above argument if w′ is adjacent with a vertex
in Vy,z \ {s}, then it must be adjacent with each vertex in Vx ∪ Vy,z. Also if w′ is adjacent with
a vertex in {s} ∪ Vx, then w′ must be adjacent with each vertex in {s} ∪ Vx. So suppose w′ is
adjacent with each vertex in s ∪ Vx and w′ is not adjacent with each vertex in Vy,z \ {s}. Then
there are two possibilities: either ww′ /∈ E(G) or ww′ ∈ E(G). Let v ∈ Vy,z \ {s}. In the first case
G[{x, y, s, v, w, w′}] ' G6,15 and in the second case G[{x, y, v, w, w′}] ' P5. Since both graphs are
forbidden, then we get a contradiction and thus w′ is adjacent with v. And therefore w′ is adjacent
with each vertex in Vx ∪ Vy,z. �

Claim 2.66. Either each vertex in V∅ is adjacent with each vertex in Vx ∪ {s}, or each vertex
in V∅ is adjacent with each vertex in Vx ∪ Vy,z.

Proof. Let w ∈ V∅. Clearly, if w is adjacent with a vertex in Vx ∪ {v}, then w is adjacent
with each vertex in Vx∪{v}, because otherwise P5 would be an induced subgraph. By Claim 2.65,
we have that if there is a vertex w ∈ V∅ adjacent with a vertex in Vy,z, different to the apex s, then
each vertex in V∅ is adjacent with each vertex in Vx and Vy,z \ {s}. Thus we get the result. �

Claim 2.67. The vertex set V∅ induces either a clique of cardinality at most 2 or a trivial graph.

Proof. First note that P3 is forbidden as induced subgraph in V∅. It is because if w1, w2, w3 ∈
V∅ induce P3, then G[{x, y, u1, w1, w2, w3}] ' G6,7. Now we will get that each component in G[V∅]
is a clique. Let C be a component in G[V∅]. Suppose C is not a clique, then it has two vertices
not adjacent, say u and v. Let P be the smallest path in C between u and v. Thus the length of
P is greater or equal to 3. So P3 is an induced subgraph of P , and hence of C. Therefore, C is a
complete graph.

On the other hand, the graph K2 + K1 is forbidden for G[V∅]. It is because if w1, w2, w3 ∈ V∅
such that G[{w1, w2, w3}] ' K2 + K1, then G[{x, y, u1, w1, w2, w3}] ' G6,8; which cannot happen.
Therefore, if G[V∅] has more than one component, then each component has cardinality one. �

In the first case of Claim 2.66, if |Vy,z| ≥ 2, then V∅ is either K1 or K2, because if u1 ∈ Vx,
v ∈ Vy,z \ {s}, and w1, w2 ∈ V∅ are adjacent, then G[{w1, w2, u1, v, x, y}] ' G6,3. Otherwise if
Vy,z = {s}, then both possibilities in Claim 2.67 are allowed. In the second case of Claim 2.66, if
|Vy,z| ≥ 3, we have that V∅ = ∅, because if w ∈ V∅ is adjacent with u1, u2 ∈ Vx and with two vertices
v1, v2 ∈ Vy,z \ {s}, we get G[{x, y, u1, u2, v1, v2, w}] ' G7,13 as forbidden subgraph. If |Vy,z| = 2,
then V∅ is trivial since ω(G) = 3. And if Vy,z = {s}, then both possibilities in Claim 2.67 are
allowed. With no much effort the reader can see that each of these cases corresponds to a graph
isomorphic to an induced subgraph of a graph in F1

1 .
Case (c). By Claim 2.66, there are two possible cases:

• either each vertex in V∅ is adjacent with each vertex in Vx ∪ Vy,z, or
• each vertex in V∅ is adjacent with each vertex in Vx, and no vertex in V∅ is adjacent with

any vertex in Vy,z.
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In first case when |Vy,z| ≥ 2, the vertex set V∅ is empty. Because if w ∈ V∅ is adjacent with the
vertices v1, v2 ∈ Vy,z, and u1, u2 ∈ Vx, then the induced subgraph G[{x, y, u1, u2, v1, v2, w}] ' G7,13

which is forbidden. Then the vertex set V∅ is empty. Otherwise when |Vy,z| = 1, then the vertex set
V∅ must be a stable set, because if there exist two adjacent vertices in V∅, then by taking a vertex
in Vx and a vertex in Vy,z we get K4 that is forbidden. Finally, in the case when each vertex in V∅
is adjacent with each vertex in Vx, and no vertex in V∅ is adjacent with a vertex in Vy,z, we get that
V∅ is a clique of cardinality at most 2. It is because if w1, w2 ∈ V∅ are such that w1w2 /∈ E(G), then
we get G[{w1, w2, u1, v, x, y}] ' G6,3 that is forbidden. And each of these graphs are isomorphic to
an induced subgraph of a graph in F1

1 .
7.0.3. Case Vx is a complete bipartite graph of cardinality at least 3. Assume Vx is a

complete bipartite graph of cardinality at lest three with (A,B) the bipartition of Vx.

Claim 2.68. If v ∈ Vy,z, then E(v, Vx) 6= ∅.

Proof. Suppose E(v, Vx) = ∅. There exist u1, u2, u3 ∈ Vx such that G[{u1, u2, u3}] ' P3.
And then we get contradiction since the induced subgraph G[{u1, u2, u3, x, y, v}] ' G6,7; which is
forbidden. �

Claim 2.69. Let u ∈ Vx and v ∈ Vy,z. If u and v are adjacent, then v is adjacent with each
vertex in the part (A or B) containing u.

Proof. Suppose u ∈ A and v is not adjacent with any vertex in A \ {u}. If |A| = 1, then
the result follows, so we may assume |A| ≥ 2. Since G[Vx] is connected and has cardinality at
least 3, then there exists u′ ∈ A and u′′ ∈ B such that G[{u, u′′, u′}] ' P3. We have u′ and v are
not adjacent. There are two possibilities: either u′′v ∈ E(G) or u′′v /∈ E(G). In the first case
the induced subgraph G[{u′, u′′.u, v, y}] is isomorphic to P5, and in the second case the induced
subgraph G[{x, y, u, u′, u′′, v}] is isomorphic to G6,17. Since both cases are forbidden, we get a
contradiction. �

Previous Claims suggest to divide the vertex set Vy,z in three subsets:

• V A
y,z, the vertices in Vy,z that are adjacent with each vertex in A,

• V B
y,z, the vertices in Vy,z that are adjacent with each vertex in B, and

• V AB
y,z , the vertices in Vy,z that are adjacent with each vertex in A ∪B.

In what follows, we assume |A| ≥ |B|.

Claim 2.70. The cardinality of the sets V A
y,z and V B

y,z is no more than 1.

Proof. Suppose there exist v, v′ ∈ V A
y,z. Let u ∈ A, and u′ ∈ B. Since G[{u, u′, v, v′, x, y}] is

isomorphic to G6,15, which is forbidden, then we get a contradiction. The case V B
y,z is similar. �

Claim 2.71. If |B| ≥ 2 and Vy,z 6= ∅, then one of the sets V B
y,z or V AB

y,z is empty.

Proof. Suppose v ∈ V B
y,z and v′ ∈ V AB

y,z . Let u, u′ ∈ B, and u′′ ∈ A. ThusG[{v, v′, u, u′, u′′, x, y}] '
G7,13. Which is impossible. �

Since |A| ≥ 2, then by applying previous Claim to A, one of the sets V A
y,z or V AB

y,z is empty.
Thus the possible cases we have are the following:

(a) Vy,z = ∅,
(b) V B

y,z ∪ V AB
y,z = ∅ and |V A

y,z| = 1,

(c) V A
y,z ∪ V AB

y,z = ∅ and |V B
y,z| = 1,
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(d) V AB
y,z = ∅ and |V A

y,z| = |V B
y,z| = 1,

(e) V A
y,z = ∅, |B| = 1, |V B

y,z| = 1 and |V AB
y,z | ≥ 1, and

(f) V A
y,z ∪ V B

y,z = ∅ and |V AB
y,z | ≥ 1.

Now we describe V∅, that is, the set of vertices not adjacent with any vertex in {a, b, c}. Let
w ∈ V∅. The vertex w is adjacent with a vertex in Vx ∪ Vy,z, because otherwise the shortest path
from w to {x, y} would contains the graph P5 as induced subgraph.

Claim 2.72. Let w ∈ V∅. If w is adjacent with a vertex in Vx, then w is adjacent with each
vertex in the parts of the partition (A,B) with cardinality greater or equal to 2.

Proof. Let v ∈ Vx be a vertex adjacent with w. Suppose v ∈ B. we will prove two things:
(1) if |B| ≥ 2, then w is adjacent with each vertex in B, and (2) w is adjacent with each vertex in
A.

Let us consider case when |B| ≥ 2. We will see that w is adjacent with each vertex in
B. Suppose there is a vertex v′ ∈ B not adjacent with w. Take u ∈ A. Thus there are two
possibilities: either u and w are adjacent or not. The case uw ∈ E(G) is impossible because
G[{u, v, v′, w, x, y}] ' G6,10, which is forbidden. Meanwhile, the case uw /∈ E(G) is impossible
because G[{u, v, v′, w, x, y}] ' G6,14, which is forbidden. Thus w is adjacent with v′, and therefore
w is adjacent with each vertex in B.

Now we see that w is adjacent with each vertex in A. Note that in this case |B| may be equal
to 1. Suppose w is not adjacent with any vertex in A. Let u, u′ ∈ A. Since the induced subgraph
G[{w, v, u, u′, x, y}] is isomorphic to the forbidden graph G6,5, then we get a contradiction. Thus w
is adjacent with a vertex in A. Now applying the previous case (1) to A, we get that w is adjacent
with each vertex in A. �

Next Claim show us what happens in the case when |B| = 1.

Claim 2.73. If |B| = 1 and E(V∅, Vx) 6= ∅, then only one of the edges sets E(V∅, Vx) or E(V∅, A)
induces a complete bipartite graph.

Proof. Let w,w′ ∈ V∅, u ∈ B, and u′ ∈ A. By Claim 2.72, vertices w and w′ are adjacent
with each vertex in A. Suppose w is adjacent with u, and w′ is not adjacent with u. There are
two possibilities: either w and w′ are adjacent or not. If ww′ ∈ E(G), then the induced subgraph
G[w,w′, u, x, y] is isomorphic to P5; which is impossible. On the other hand, if ww′ /∈ E(G), then
G[{w,w′, u, u′, x, y}] is isomorphic to G6,10, which is forbidden. So we get a contradiction, and the
result follows. �

Claim 2.74. Let w ∈ V∅. If w is adjacent with v ∈ Vy,z, then w is adjacent with each vertex
in the parts of partition (A,B) with cardinality greater or equal to 2. Moreover, if v ∈ V A

y,z ∪ V AB
y,z

and |B| = 1, then w is adjacent with the unique vertex in B.

Proof. Let w ∈ V∅ and v ∈ Vy,z such that w and v are adjacent. By Claim 2.68, E(v, Vx) 6= ∅,
and therefore there are three cases: v ∈ V A

y,z, v ∈ V AB
y,z , or v ∈ V B

y,z.

Suppose v ∈ V A
y,z. If E(w, Vx) = ∅, then by taking u, u ∈ A, the forbidden induced subgraph

G[W ∪ {w, v, u, u′}] ' G7,2 would appear and we get a contradiction. Thus E(w, Vx) 6= ∅. By
Claim 2.72, w is adjacent with each vertex in the parts of Vx with cardinality greater or equal to
2. When |B| = 1, take u′′ ∈ B. If wu′′ /∈ E(G), then G[{w, v, y, x, u′′}] would be isomorphic to the
forbidden graph P5. Therefore, wu′′ ∈ E(G).
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Suppose v ∈ V AB
y,z . In a similar way than in previous case we get that E(w, Vx) 6= ∅, and v

is adjacent with each vertex in the parts of the partition (A,B) of cardinality greater or equal
to 2. In the case when |B| = 1, suppose u ∈ B with wu /∈ E(G). Take u′ ∈ A, we know that
u′w ∈ E(G). Since G[{w, u, u′, x, y, v}] ' G6,24, then we get a contradiction. Thus wu ∈ E(G).

Now suppose v ∈ V B
y,z. It is easy to see that v is adjacent with each vertex in A, because

otherwise P5 would appear. Therefore E(w, Vx) 6= ∅, and by Claim 2.72, we have that w is
adjacent with each vertex in the parts of the partition (A,B) of cardinality greater or equal to
2. �

Claim 2.75. If E(V∅, B) 6= ∅, then E(V∅, V
AB
y,z ) = ∅. Moreover, if E(V∅, B) 6= ∅ and E(V∅, V

B
y,z) 6=

∅, then V AB
y,z = ∅.

Proof. Let w ∈ V∅ and v ∈ V AB
y,z . Suppose w and v are adjacent. Take u1 ∈ A and u2 ∈ B.

Since v is in V AB
y,z and u1 is adjacent with u2, then G[{v, u1, u2}] is isomorphic to K3. On the other

hand, by Claims 2.72 and 2.73, w is adjacent with each vertex in A∪B. Thus the induced subgraph
G[{w, v, u1, u2}] is isomorphic to K4 that is forbidden, and therefore w cannot be adjacent with v.

Let w is adjacent with u2 ∈ B and v′ ∈ V B
y,z, and suppose there exists a vertex v ∈ V AB

y,z .
Since w is not adjacent with v, then G[{w, v, v′, u2, x, y}] is isomorphic to G6,15; which it is not
possible. �

Claim 2.76. Let w ∈ V∅ and v ∈ Vy,z. If w and v are adjacent, then each vertex in V∅ is
adjacent with v.

Proof. Suppose w′ ∈ V∅ such that w′ is not adjacent with v. By Claims 2.72 and 2.73, both
vertices w and w′ are adjacent with each vertex in A. Let u ∈ A. There are four cases obtained
by the combinations of the following possible cases: either ww′ ∈ E(G) or ww′ /∈ E(G), and either
v ∈ V A

y,z or v ∈ V B
y,z. When ww′ ∈ E(G) and v ∈ V B

y,z, the induced subgraph G[{w′, w, v, y, x}] is

isomorphic to P5; which is not possible. When ww′ /∈ E(G) and v ∈ V B
y,z, the induced subgraph

G[{w′, u, w, v, y}] is isomorphic to P5; which is not possible. When ww′ ∈ E(G) and v ∈ V A
y,z,

the induced subgraph G[{w′, w, v, y, x}] is isomorphic to P5; which is not possible. Finally, when
ww′ /∈ E(G) and v ∈ V A

y,z, the induced subgraph G[{w′, w, x, y, v, u}] is isomorphic to G6,11; which
is not possible. Thus w′ is adjacent with v. �

Claim 2.77. Let v ∈ V A
y,z and v′ ∈ V B

y,z. If w ∈ V∅ is adjacent with v or v′, then w is adjacent
with both v and v′.

Proof. First suppose w is adjacent with v and not with v′. Let u ∈ A. By Claim 2.74, w is
adjacent with a vertex u ∈ A. Thus G[{w, u, x, y, v′}] is isomorphic to P5 that is a contradiction.
Therefore w and v′ are adjacent. Now suppose w is adjacent with v′ and not with v. Let u ∈ B.
If u is adjacent with w, then a P5 is obtained in a similar way than previous case. Thus assume
u is not adjacent with w. Then G[{w, x, y, u, v, v′}] is isomorphic to G6,9; which is impossible.
Therefore, w and v are adjacent. �

Claim 2.78. If V AB
y,z 6= ∅, then E(V∅, B) = ∅.

Proof. Let u1, u2 ∈ A, u3 ∈ B, w ∈ V∅ and v ∈ V AB
y,z . By Claim 2.72, w is adjacent

with u1 and u2. Suppose w is adjacent with u3. By Claim 2.75, the vertices w and v are not
adjacent. Thus G[{x, y, u1, u2, u3, v, w}] is isomorphic to G7,10, which is a contradiction. Therefore,
E(V∅, B) = ∅. �
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Thus applying previous Claims to cases (a) - (f), we obtain the following possibilities:

(1) Vy,z = ∅, |B| = 1, and E(V∅, A) induces a complete bipartite graph,
(2) Vy,z = ∅, |B| ≥ 1, and E(V∅, Vx) induces a complete bipartite graph,
(3) V B

y,z∪V AB
y,z = ∅, |V A

y,z| = 1, |B| ≥ 1 and E(V∅, Vx∪Vy,z) induces a complete bipartite graph,

(4) V A
y,z ∪V AB

y,z = ∅, |V B
y,z| = 1, |B| = 1 and E(V∅, A∪Vy,z) induces a complete bipartite graph,

(5) V A
y,z∪V AB

y,z = ∅, |V B
y,z| = 1, |B| ≥ 1 and E(V∅, Vx∪Vy,z) induces a complete bipartite graph,

(6) V AB
y,z = ∅, |V A

y,z| = |V B
y,z| = 1, |B| ≥ 1 and E(V∅, Vx ∪ Vy,z) induces a complete bipartite

graph,
(7) V A

y,z ∪ V B
y,z = ∅, |V AB

y,z | ≥ 1, |B| = 1 and E(V∅, A) induces a complete bipartite graph,

(8) V A
y,z ∪ V B

y,z = ∅, |V AB
y,z | ≥ 1, |V B

y,z| = 1, |B| = 1 and E(V∅, A ∪ V B
y,z) induces a complete

bipartite graph.

With a similar argument as in Claim 2.67, we obtain that V∅ is either trivial or K2. In cases
(1), (4), (7) and (8), V∅ cannot be Tn with n ≥ 2, since taking w,w′ ∈ V∅, u ∈ A, u′ ∈ B, then
G[{w,w′, u, u′, x, y}] ' G6,2. On the other hand, since ω(G) = 3, then V∅ is not isomorphic to K2

in the cases (2), (3), (5) and (6). It is not difficult to see that in each case G is isomorphic to an
induced subgraph of a graph in F1

1 .
7.0.4. Case when Vx induces K1 + K2 or 2K2. Through this case we assume that Vx =

{u1, u2, u3, u4} such that u1u2, u3u4 ∈ E(G). That is, G[{u1, u2, u3, u4}] ' 2K2. Let A = {u1, u2}
and B = {u3, u4}. The following discussion also applies when one of the vertex set A or B has
cardinality 1.

Claim 2.79. If v ∈ Vy,z, then E(v, Vx) 6= ∅. Moreover, if v ∈ Vy,z, then v is adjacent with each
vertex in one of the following sets A, B or Vx.

Proof. Suppose there is no edge joining v and a vertex in Vx. Since G[{u1, u2, u3, x, y, v}] '
G6,6 is a forbidden induced subgraph, then a contradiction is obtained. Then v is adjacent with
some vertex in Vx.

Suppose v is adjacent with one of the vertices in A. We will prove that v cannot be adjacent
only with one vertex of A, say u1. Thus suppose v is adjacent with u1, and v is not adjacent with
u2, u3 and u4. Since G[{u1, u2, u3, v, x, y}] ' G6,11, then v is adjacent with u2 or a vertex in B, say
u3. If v is adjacent with u2, then we are done. So we assume v is adjacent with u1, but v is not
adjacent with u2. This is not possible because G[{u1, u2, u3, v, y, z}] ' G6,10. Therefore, either v is
adjacent with both u1 and u2, or v is not adjacent with neither of u1 and u2 �

Claim 2.80. If |Vy,z| ≥ 2, then each vertex in Vy,z is adjacent with each vertex of only one of
the following sets A, B or Vx.

Proof. Let v, v′ ∈ Vy,z. Consider the following cases:

(a) v is adjacent with each vertex in A and v′ is adjacent with each vertex in B,
(b) v is adjacent with each vertex in Vx and v′ is adjacent with each vertex in B, and
(c) v is adjacent with each vertex in Vx and v′ is adjacent with each vertex in A.

Case (a) is impossible because G[{u1, v, y, v
′, u3}] ' P5, which is forbidden. On the other hand,

cases (b) and (c) are not allowed because G[{a, b, c, v, v′, u1, u3}] ' G7,9; which is forbidden. Thus,
the result follows. �

Thus E(Vx, Vy,z) satisfies only one of the following three cases:

(1) E(Vy,z, A) induces a complete bipartite graph,
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(2) E(Vy,z, B) induces a complete bipartite graph, or
(3) E(Vy,z, Vx) induces a complete bipartite graph.

Now we describe V∅, the set of vertices not adjacent with any vertex in {a, b, c}. Let w ∈ V∅.
The vertex w is adjacent with a vertex in Vx ∪Vy,z, because otherwise the shortest path from w to
{x, y} would contains the graph P5 as induced subgraph.

Claim 2.81. If w ∈ V∅ is adjacent with a vertex in Vx, then w is adjacent with each vertex in
Vx.

Proof. Suppose w is adjacent with u1 and not with u3. Since G[W ∪ {w, u1, u3}] ' G7,4 is
forbidden, w also must be adjacent with u3. In a similar way we get the opposite case and it turns
out the result. �

Consider Cases (1) and (2). The following arguments works on both cases. First note that if
there exists w ∈ V∅ adjacent with v ∈ Vy,z, then w is adjacent with each vertex in Vx. The reason is
the following. Suppose w is not adjacent with any vertex in Vx. Since v is not adjacent with a vertex
in Vx, say u, and the vertices w and u are not adjacent, then we have that G[{w, v, y, x, u}] ' P5;
which is a contradiction. Then w and u are adjacent. And by Claim 2.81, the edge set E(w, Vx)
induces a complete bipartite graph. On the other hand, we can prove in a similar way that if
there exists w ∈ V∅ adjacent with each vertex in Vx, then w is adjacent with each vertex in Vy,z.
Therefore, each vertex in V∅ is adjacent with each vertex in Vx ∪ Vy,z. Furthermore, the set V∅ is
a stable set. It is because if w,w′ ∈ V∅ were adjacent, then by taking u ∈ Vx and v ∈ Vy,z such
that u and v are adjacent, the induced subgraph G[{w,w′, u, v, x, y}] would be isomorphic to G6,20;
which is impossible. These cases correspond to a graph isomorphic to an induced subgraph of a
graph in F1

1 .
Now let us consider case (3).

Claim 2.82. If w ∈ V∅ is adjacent with a vertex in Vy,z, then each vertex in V∅ is adjacent with
each vertex in Vx ∪ Vy,z.

Proof. Let w ∈ V∅ and v ∈ Vy,z such that wv ∈ E(G). Suppose w is not adjacent with
any vertex in Vx. Take u2, u3 ∈ Vx such that u2u3 ∈ E(G). Since the induced subgraph
G[{a, b, c, w, u2, u3, v}] is isomorphic to G7,2, then we get a contradiction; and w is adjacent with a
vertex in Vx. Thus by Claim 2.81, w is adjacent with each vertex in Vx.

Suppose that there exists v′ ∈ Vy,z such that w is not adjacent with v′. Since the vertex set
{w, u1, x, y, v, v

′} would induce G6,15, this does not occur. Therefore, w is adjacent with each vertex
in Vx ∪ Vy,z.

Suppose there is another vertex w′ ∈ V∅. By the above argument, if w′ is adjacent with a
vertex in Vy,z, then it must be adjacent with each vertex in Vx ∪ Vy,z. And we are done. On
the other hand, by Claim 2.81, if w′ is adjacent with a vertex in Vx, then w′ must be adjacent
with each vertex in Vx. So suppose w′ is adjacent with each vertex in Vx, but not adjacent with
each vertex in Vy,z. Then there are two possibilities: either ww′ /∈ E(G) or ww′ ∈ E(G). In the
first case G[{x, y, u1, v, w, w

′}] ' G6,11 and in the second case G[{x, y, v, w, w′}] ' P5. Since both
graphs are forbidden, then w′ is adjacent with v. And therefore w′ is adjacent with each vertex in
Vx ∪ Vy,z. �

By Claims 2.81 and 2.82, we obtain that there are two possible cases: either each vertex in V∅
is adjacent with each vertex in Vx ∪ Vy,z, or each vertex in V∅ is adjacent only with each vertex in
Vx. Consider first case. If there exists a vertex w ∈ V∅, then w adjacent with the vertices v ∈ Vy,z,
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and u1, u2 ∈ Vx. Thus G[{w, v, u1, u2}] is isomorphic to K4 that is not allowed, then V∅ is empty.
Now consider second case. Let w ∈ V∅ and v ∈ Vy,z. Thus w is adjacent with u1, u2 and u3. Since
G[{w, u1, u2, u3, v, x, y}] is isomorphic to G7,9, we get a contradiction. Then V∅ = ∅. The graph in
this case is isomorphic to an induced subgraph of a graph in F1

1 .
7.0.5. Cases when G[Va∪Vb∪Vc] = Vx∨(Vy+Vz) is one of the following graphs: K1∨2K1,

K1∨(K1 +K2), K1∨2K2, or K2∨2K1. For the sake of clarity, we suppose E(Va, Vb) and E(Va, Vc)
induce a complete bipartite graph, and E(Vb, Vc) is empty. Now we are going to obtain some claims
that describe the edge sets joining Vx and Vy,z.

Claim 2.83. Let x, y ∈ {a, b, c}. If E(Vx, Vy) is not empty, then E(Vx, Vxy) and E(Vy, Vxy) are
empty.

Proof. Let vx ∈ Vx, vy ∈ Vy and vxy ∈ Vx,y. Suppose vxy is adjacent with both vx and vy.
Then G[{a, b, c, vxy, vx, vy}] ' G6,24; which is a contradiction. Now suppose vxy is adjacent with
vx and not with vy. In this case G[{a, b, c, vxy, vx, vy}] ' G6,17; which is impossible. And therefore
result turns out. �

Claim 2.83 implies that E(Va,b, Va ∪ Vb) = ∅ and E(Va,c, Va ∪ Vc) = ∅.

Claim 2.84. Let x, y ∈ {a, b, c}. If Vx,y 6= ∅ and E(Vx, Vy) = ∅, then each edge set E(Vx, Vx,y)
and E(Vy, Vx,y) induces a complete bipartite graph.

Proof. Let vx ∈ Vx, vy ∈ Vy and vxy ∈ Vx,y. Suppose vxy is not adjacent with both vx and vy.
Then G[{a, b, c, vxy, vx, vy}] ' G6,5; which is a contradiction. Finally, suppose vxy is adjacent with
vx and not with vy. Since G[{a, b, c, vx,y, vx, vy}] ' G6,14 is forbidden, then we get a contradiction.
And the result turns out. �

Claim 2.84 implies that each vertex in Vb,c is adjacent with each vertex in Vb ∪ Vc.

Claim 2.85. If Vb,c 6= ∅, then E(Va, Vb,c) is empty.

Proof. Let va ∈ Va, vb ∈ Vb and vbc ∈ Vb,c. Suppose vbc is adjacent with va. Then
G[{a, b, c, va, vb, vbc}] is isomorphic to G6,25 that is forbidden. Therefore, there is no edge join-
ing a vertex in Va with a vertex in Vb,c. �

Claim 2.86. Let x ∈ {b, c}. If Va,x 6= ∅, then E(Va,x, Vx) induces a complete bipartite graph.

Proof. Let vb ∈ Vb, vc ∈ Vc and vax ∈ Va,x. Suppose vax is not adjacent with vx. Since
G[{a, b, c, vax, vb, vc}] is isomorphic to G6,10 that is forbidden, then each vertex in Vx is adjacent
with each vertex in Va,x. �

Claim 2.87. The edge set E(Va,b, Va,c) induces a complete bipartite graph.

Proof. Let va ∈ Va, vb ∈ Vb, vab ∈ Va,b, and vac ∈ Va,c. We know that va is not adjacent with
both vab and vac, and vb is adjacent with vac, but vb is not adjacent with vab. Suppose vab and vac
are not adjacent. Then G[{b, c, va, vb, vab, vac, }] ' G6,9; which is impossible. And therefore, each
vertex in Va,b is adjacent with each vertex in Va,c. �

Claim 2.88. Let x ∈ {b, c} The edge set E(Va,x, Vb,c) induces a complete bipartite graph.

Proof. Let vb ∈ Vb, vc ∈ Vc, vax ∈ Va,x, and vbc ∈ Vb,c. We know that vbvbc, vbcvc, vcvab, vbvac ∈
E(G) and vxvax, vbvc /∈ E(G). Suppose vax and vbc are not adjacent. ThenG[{b, c, vb, vc, vax, vbc, }] '
G6,14; which is impossible. Therefore each vertex in Va,x is adjacent with each vertex in Vb,c. �
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Now we analyze V∅.

Claim 2.89. If w ∈ V∅, then w cannot be adjacent with any vertex in Va ∪ Vb ∪ Vc.

Proof. Let x ∈ {b, c}, y ∈ {b, c} − x, va ∈ Va and vx ∈ Vx. Suppose w ∈ V∅ such that
E(w, Va ∪ Vb ∪ Vc) 6= ∅. Consider the following cases:

(a) w is adjacent only with va,
(b) w is adjacent only with vx, or
(c) w is adjacent with both va and vx.

Cases (a) and (b) are impossible, because G would have P5 as induced subgraph obtained by
G[{w, va, vx, x, y}] and G[{w, vx, va, a, y}], respectively. Finally in case (c), the induced subgraph
G[{a, b, c, w, va, vx}] is isomorphic to G6,21; which is impossible. �

Claim 2.90. There exists no vertex in V∅ adjacent with a vertex in Vb,c.

Proof. Let w ∈ V∅, va ∈ Va, vb ∈ Vb, vc ∈ Vc, and vbc ∈ Vb,c. Suppose w is adjacent with vbc.
A contradiction is obtained since G[{w, va, vb, vc, vbc, w}] ' G6,11. Thus w is not adjacent with any
vertex in Vb,c �

Claim 2.91. There exists no vertex in V∅ adjacent with a vertex in Va,b ∪ Va,c.

Proof. Let x ∈ {b, c}, y ∈ {b, c} − x, va ∈ Va, vb ∈ Vb and vax ∈ Va,x. Suppose w is adjacent
with vax. Since the induced subgraph G[{w, vax, va, vb, vc}] is isomorphic to G6,5, then we get a
contradiction. And then the result follows. �

Claims 2.89, 2.90 and 2.91 imply that no vertex in V∅ is adjacent with a vertex in G\V∅, which
implies that V∅ = ∅. Thus the graph is isomorphic to an induced subgraph of a graph in F1

1 .
7.0.6. Case G[Va ∪ Vb ∪ Vc] = K1,1,1, where each vertex set Vx = K1. Let Va = {va},

Vb = {vb}, and Vc = {vc}. By Claim 2.83, the edge sets E(Vx,y, Vx) and E(Vx,y, Vy) are empty for
x, y ∈ {a, b, c}. By Claim 2.85, the edge set E(Vx,y, Vz) is empty for x, y, z ∈ {a, b, c}. Now let
vxy ∈ Vx,y. Since G[{vy, vz, z, x, vx,y}] is isomorphic to P5 which is a forbidden, then Vxy is empty
for each pair x, y ∈ {a, b, c}. On the other hand, by Claim 2.89 the edge set V∅ is empty. This
graph is isomorphic to G1, see Figure 5.i.

7.0.7. Case Vz = ∅ and G[Vx ∪ Vy] = Vx + Vy, where Vx = Km, Vy = Kn and m,n ∈ {1, 2}.
Without loss of generality, suppose Vc = ∅, and E(Va, Vb) is empty. By Claim 2.84, each vertex in
Va,b is adjacent with each vertex in Va ∪ Vb.

Claim 2.92. Let x ∈ {a, b}. If Vx,c 6= ∅, then E(Vx, Vx,c) = ∅.

Proof. Let y ∈ {a, b} − x, vxc ∈ Vx,c, va ∈ Va and vb ∈ Vb. Suppose vx and vxc are adja-
cent. There are two possible cases: either vy and vxc are adjacent or not. Since in the first case
G[{a, b, c, va, vb, vxc}] ' G6,17 and in the second case G[{va, vb, y, vxc, c}] is isomorphic to P5, then
we get a contradiction. Thus vx and vxc are not adjacent. �

By Claim 2.86, each vertex in Va,c is adjacent with each vertex in Vb, and each vertex in Vb,c is
adjacent with each vertex in Va.

Claim 2.93. Each vertex in Va,b is adjacent with each vertex in Va,c ∪ Vb,c.

Proof. Let vab ∈ Va,b, va ∈ Va and vb ∈ Vb. Suppose there exists vxc ∈ Vxc with x ∈ {a, b} such
that vabvxc /∈ E(G). Since G[{va, vb, vab, vxc, c}] is isomorphic to P5, then we get a contradiction;
and the vertices vab and vxc are adjacent. And the result turns out. �
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Claim 2.94. Each vertex in Va,c is adjacent with each vertex in Vb,c.

Proof. Suppose there are vac ∈ Va,c and vbc ∈ Vb,c such that vbcvac /∈ E(G). Let va ∈ Va and
vb ∈ Vb Since G[{vb, vac, c, vbc, va}] ' P5, then we get a contradiction. �

Now we describe the vertex set V∅, that is, the set of vertices that are not adjacent with any
vertex in {a, b, c}.

Claim 2.95. If w ∈ V∅, then w cannot be adjacent with any vertex in Va ∪ Vb.
Proof. Let va ∈ Va and vb ∈ Vb. Suppose w ∈ V∅ such that E(w, Va ∪ Vb) 6= ∅. Consider the

following cases:

(a) w is adjacent only with va, or
(b) w is adjacent with both va and vb.

Cases (a) and (b) are impossible, because G would have P5 as induced subgraph obtained by
G[{w, vb, b, a, va}] and G[{va, w, vb, b, c}], respectively. Thus w is not adjacent with any vertex in
Va ∪ Vb. �

Claim 2.96. There is no vertex w ∈ V∅ adjacent with a vertex in Va,b.

Proof. Suppose w ∈ V∅ is adjacent with vab ∈ Va,b. Let va ∈ Va and vb ∈ Vb. Since
G[{va, vb, va,b, w, a, c}] is isomorphic to G6,2, then we get a contradiction and w and vab are not
adjacent. �

Claim 2.97. There is no vertex w ∈ V∅ adjacent with a vertex in Va,c ∪ Vb,c.
Proof. Let x ∈ {a, b}, vxc ∈ Vx,c, y ∈ {a, b} − x and vy ∈ Vy. Suppose w ∈ V∅ is adjacent

with vxc. Since G[{vy, y, c, vxc, w}] is isomorphic to P5, then we get a contradiction and w is not
adjacent with vxc. �

Thus there is no edge between W and G \W , and therefore W is empty. Therefore, the graph
is isomorphic to an induced subgraph of a graph in F1

1 .
7.0.8. Case Vz = ∅ and G[Vx ∪ Vy] = Vx ∨ Vy, where Vx = K1, Vy = Km and m ∈ {1, 2}.

Without loss of generality, suppose Vc = ∅, and E(Va, Vb) is complete. By Claim 2.83, E(Va,b, Vx) =
∅ for x ∈ {a, b}.

Claim 2.98. Let x ∈ {a, b}. Either E(Vx,c, Va) induces a complete bipartite graph and E(Vx,c, Vb) =
∅, or E(Vx,c, Va) = ∅ and E(Vx,c, Vb) induces a complete bipartite graph.

Proof. Let va ∈ Va, vb ∈ Vb, vxc ∈ Vx,c and y ∈ {a, b} − x. First note that vxc cannot be
not adjacent with va and vb at the same time, because otherwise G[{va, vb, y, c, vxc}] would be
isomorphic to P5. Also vxc cannot be adjacent with va and vb at the same time, because otherwise
G[{a, b, c, va, vb, vxc}] would be isomorphic to G6,25. Thus vxc is adjacent only with one vertex either
va or vb.

Suppose vxc is adjacent with vy. Let v′y ∈ Vy and v′xc ∈ Vx,c. If vxc is not adjacent with v′y, then
G[{vy, v′y, x, c, vx, vxc}] is isomorphic to G6,21. Thus E(Vy, vxc) induces a complete bipartite graphs.
On the other hand, if vy and v′xc are not adjacent, then G[{va, vb, vxc, c, v′xc}] is isomorphic to P5.
Then E(Vx,c, Vy) induces a complete bipartite graph.

Suppose vxc is adjacent with vx. Let v′x ∈ Vx and v′xc ∈ Vx,c. If v′x and vxc are not adjacent,
then G[{va, vb, v′x, x, c, vxc}] is isomorphic to G6,22. Thus E(Vx, vxc) induces a complete bipartite
graph. On the other hand, if v′xc and vx are not adjacent, then G[{vy, vx, vxc, c, v′xc}] is isomorphic
to P5. Thus E(Vx,c, Vx) induces a complete bipartite graph. �
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Claim 2.99. If Va,c and Vb,c are not empty, then each vertex in Va,c ∪ Vb,c is adjacent with each
vertex in either Va or Vb .

Proof. Let vac ∈ Va,c, vbc ∈ Vb,c, va ∈ Va and vb ∈ Vb.
Suppose vac is adjacent with va, and vbc is adjacent with vb. Then there are two cases: either

vac and vbc are adjacent or not. In the first case G[{a, b, c, vb, vac, vbc}] is isomorphic to G6,24; then
this case is impossible. And in the second case G[{a, b, va, vb, vac, vbc}] is isomorphic to G6,21; then
this case is not possible.

Suppose vac is adjacent with vb and vbc is adjacent with va. Then there are two cases: either
vac and vbc are adjacent or not. In the first case G[{a, b, c, va, vb, vac, vbc}] is isomorphic to G7,13;
then this case is impossible. And in the second case G[{a, b, c, vb, vac, vbc}] is isomorphic to G6,17;
then this case is not possible.

Thus vac and vbc are adjacent with the same vertex: either va or vb. And the result follows. �

Claim 2.100. If Va,c and Vb,c are not empty, then the set E(Vac, Vbc) induces a complete bipartite
graph.

Proof. Let x ∈ {a, b} and y ∈ {a, b} − x, vac ∈ Va,c, vbc ∈ Vb,c, va ∈ Va and vb ∈ Vb. Suppose
vxc and Vyc are not adjacent, and vxc and vyc are adjacent with vx. Since G[{x, y, vx, vy, vx,c, vy,c}] '
G6,15, we get a contradiction. And then E(Vac, Vbc) induces a complete bipartite graph. �

Claim 2.101. Let x ∈ {a, b}. If Vx,c 6= ∅, then E(Vx,c, Va,b) induces a complete bipartite graph.

Proof. Let y ∈ {a, b} − x, vxc ∈ Vx,c, vab ∈ Va,b, va ∈ Va and vb ∈ Vb. Suppose vxc and vab are
not adjacent. There are two cases: either vxc is adjacent with vx or vxc is adjacent with vy. If vxc
is adjacent with vx, then the induced subgraph G[{vab, y, vy, vx, vxc}] is isomorphic to P5; which is
a contradiction. Then this case is impossible. On the other hand, if vxc is adjacent with vy, then
the induced subgraph G[{vac, va, vb, a, b, vxc}] is isomorphic to G6,9; which is a contradiction. Thus
this case is also impossible, and therefore E(Vx,c, Va,b induces a complete bipartite graph. �

Now let us describe V∅. By Claim 2.89, there exists no vertex in V∅ adjacent with a vertex in
Va ∪ Vb.

Claim 2.102. There is no vertex in V∅ adjacent with a vertex in Va,b.

Proof. Let vab ∈ Va,b and w ∈ V∅. Suppose vab and w are adjacent. Since G[{w, va,b, a, va, vb}]
is isomorphic to P5, then we get a contradiction. And therefore vab and w are not adjacent. �

Claim 2.103. Let x ∈ {a, b}. There is no vertex in V∅ adjacent with a vertex in Vx,c.

Proof. Let y ∈ {a, b} − x, vxc ∈ Vx,c, vab ∈ Va,b, va ∈ Va and vb ∈ Vb. Suppose the vertex
w ∈ V∅ is adjacent with vxc. There are two cases: either vxc is adjacent with x or vxc is adjacent
with y. First case is impossible since G[{w, vxc, vx, vy, y}] is isomorphic to P5; which is forbidden.
And second case cannot occur because G[{w, y, vxc, c, va, vb}] ' G6,9. Then it follows that w is
adjacent with no vertex in Vx,c. �

Thus by previous Claims, the vertex set V∅ is empty, because there is no vertex in V∅ adjacent
with a vertex in G \ V∅. Then G is isomorphic to an induced subgraph of a graph in F1

1 .
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7.0.9. Case Vy ∪Vz = ∅ and Vx is K1 or K2. Without loss of generality, suppose Vb = Vc = ∅
and Va = {u1, u2}.

Claim 2.104. Let x ∈ {b, c}. If Va,x 6= ∅, then either E(Va, Va,x) induces a complete bipartite
graph or E(Va, Va,x) is empty.

Proof. Let u ∈ Va. Suppose there exist v1, v2 ∈ Va,x such that uv1 ∈ E(G) and uv2 /∈ E(G).
Since the induced subgraph G[{a, b, c, u, v1, v2}] is isomorphic to G6,16, then we get a contradiction.
Thus this case is not possible and therefore u is adjacent with either each vertex in Va,x or no
vertex in Va,x. Now we are going to discard the possibility that E(u1, Va,x) induces a complete
bipartite graph and E(u2, Va,x) = ∅. Suppose there is a vertex v ∈ Va,x such that u1v ∈ E(G)
and u2v /∈ E(G). Since the induced subgraph G[{c, b, v, u1, u2}] is isomorphic to P5, then we
get a contradiction. Thus either E(Va, Va,x) induces a complete bipartite graph or E(Va, Va,x) is
empty. �

Claim 2.105. Let u ∈ Va. If Vb,c 6= ∅, then E(u, Vb,c) satisfies only one of the following:

• it induces a complete bipartite graph,
• it is an empty edge set, or
• it induces a complete bipartite graph minus an edge.

Proof. Suppose there exist v1, v2, v3 ∈ Vb,c such that uv1 ∈ E(G) and uv2, uv3 /∈ E(G). Since
the induced subgraph G[{a, b, u, v1, v2, v3}] is isomorphic to G6,3, then we get a contradiction. Thus
this case is not possible and the result follows. �

Claim 2.106. If Va = {u1, u2} and Vb,c 6= ∅, then E(Va, Vb,c) satisfies one of the following:

• it induces a complete bipartite graph,
• it is an empty edge set,
• it induces a complete bipartite graph minus an edge,
• it induces a perfect matching and |Va| = |Vb,c| = 2, or
• it induces a complete bipartite graph minus two edges u1v and u2v, where v ∈ Vb,c.

Proof. Since cases where |Vb,c| ≤ 2 can be checked easily with a computer algebra system or
with similar arguments to the rest of the proof, then we asume |Vb,c| ≥ 3. By Claim 2.105, we only
have to check the possibilities of the edge sets E(u1, Vb,c) and E(u2, Vb,c). The possible cases we
have to discard are the following:

• E(u1, Vb,c) = ∅ and E(u2, Vb,c) induces a complete bipartite graph,
• E(u1, Vb,c) = ∅ and E(u2, Vb,c) induces a complete bipartite graph minus an edge, and
• each edge set E(u1, Vb,c) and E(u2, Vb,c) induces a complete bipartite graph minus an edge

and the two removed edges don’t share a common vertex.

Let v1, v2, v3 ∈ Vb,c. Suppose we are in the first case. Thus u1 is adjacent with no vertex in Vb,c,
and u2 is adjacent with each vertex in Vb,c. Since the induced subgraph G[{a, b, u1, u2, v1, v2}] is
isomorphic to G6,15, then we get a contradiction and this case is not possible. Suppose we are in
the second case. Thus u1 is adjacent with no vertex in Vb,c, and u2 is adjacent only with each
vertex in Vb,c − v1. Since the induced subgraph G[{v1, b, v2, u2, u1}] is isomorphic to P5, then we
get a contradiction and this case is not possible. Finally, suppose we are in the third case. Thus
u1 is adjacent with each vertex in Vb,c − v1, and u2 is adjacent with each vertex in Vb,c − v2. Since
the induced subgraph G[{a, u1, u2, v1, v2, v3}] is isomorphic to G6,5, then we get a contradiction and
this case is not possible. And the result turns out. �
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Claim 2.107. If E(Va, Va,b) and E(Va, Va,c) are empty, then E(Va,b, Va,c) induces a complete
bipartite graph.

Proof. Let vab ∈ Va,b and vac ∈ Va,c. Suppose vab and vac are not adjacent. Since the induced
subgraph G[{a, b, c, u1, vab, vac}] is isomorphic to G6,12, then we get a contradiction. And thus each
vertex in Va,b is adjacent with each vertex in Va,c. �

Claim 2.108. If each of the edge sets E(Va, Va,b) and E(Va, Va,c) induces a complete bipartite
graph, then |Va| = |Va,b| = |Va,c| = 1 and E(Va,b, Va,c) = ∅.

Proof. First we will prove that E(Va,b, Va,c) = ∅. Let vab ∈ Va,b and vac ∈ Va,c. Suppose
vab and vac are adjacent. Since the induced subgraph G[{a, b, c, vab, vac, va}] is isomorphic to G6,26,
then we get a contradiction. And thus E(Va,b, Va,c) = ∅.

Now let x ∈ {b, c}. Suppose Va,x has cardinality at least 2. Let y ∈ {b, c} − x, vax, v
′
ax ∈ Va,x

and v ∈ Va,y. Then vaxv, vaxv /∈ E(G). Since the induced subgraph G[{a, y, vax, v′ax, va, v}] is
isomorphic to G6,16, then we get a contradiction. And then |Va,b| = |Va,c| = 1

Finally suppose that |Va| = 2. Let vab ∈ Va,b and vac ∈ Va,c. Since G[{vab, vac, u1, u2, a, x}] is
isomorphic to G6,23, then we get a contradiction. Thus Va has cardinality at most 1. �

Claim 2.109. Let x ∈ {b, c} and y ∈ {b, c} − x. If E(Va, Va,x) = ∅ and E(Va, Va,y) induces a
complete bipartite graph, then E(Va,b, Va,c) induces a complete bipartite graph.

Proof. Let vab ∈ Va,b and vac ∈ Va,c. Suppose vab and vac are not adjacent. Since the
induced subgraph G[{va, vay, y, x, vax}] is isomorphic to P5, then we get a contradiction. And thus
E(Va,b, Va,c) induces a complete bipartite graph. �

Claim 2.110. Let x ∈ {b, c}. If Va,x 6= ∅, Vb,c 6= ∅ and E(Va, Va,x) = ∅, then only one of the
following statements is true:

• E(Va, Vb,c) = ∅ and E(Va,x, Vb,c) induces a complete graph, or
• each edge set E(Va, Vb,c) and E(Va,x, Vb,c) induce a complete bipartite graph.

Proof. We will analyze the following four cases:

• when E(Va, Vb,c) = ∅,
• when E(Va, Vb,c) induces a complete bipartite graph,
• when there exist u ∈ Va and v1, v2 ∈ Vb,c such that uv1 ∈ E(G) and uv2 /∈ E(G), and
• when there exists v ∈ Vb,c such that u1v ∈ E(G) and u2v /∈ E(G), where u1, u2 ∈ Va.

Consider the first case. Let vax ∈ Va,x and vbc ∈ Vb,c. Suppose vax and vbc are not adjacent. Since
the induced subgraph G[{a, b, c, u1, vax, vbc}] is isomorphic to G6,14, then we get a contradiction.
And thus E(Va,x, Vb,c) induces a complete bipartite graph.

Now consider the second case. Let vax ∈ Va,x and vbc ∈ Vb,c. Suppose vax and vbc are not
adjacent. Since the induced subgraph G[{a, b, c, u1, vax, vbc}] is isomorphic to G6,17, then we get a
contradiction. And thus E(Va,x, Vb,c) induces a complete bipartite graph.

In what follows we will prove that the last two cases are impossible which implies that the rest
possibilities of Claim 2.106 are impossible.

Now consider the third case. Let vax ∈ Va,x. Suppose there exist u ∈ Va and v1, v2 ∈ Vb,c such
that uv1 ∈ E(G) and uv2 /∈ E(G). There are four possible cases:

• vaxv1, vaxv2 ∈ E(G),
• vaxv1, vaxv2 /∈ E(G),
• vaxv1 ∈ E(G) and vaxv2 /∈ E(G), or
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• vaxv1 /∈ E(G) and vaxv2 ∈ E(G).

Since in first case G[{a, b, c, u, vax, v1, v2}] ' G7,10, in second case G[{b, c, u, vax, v1, v2}] ' G6,10, in
third case G[{b, c, u, vax, v1, v2}] ' G6,14 and in fourth case G[{u, v1, vy, v2, vax}] ' P5, then we get
a contradiction.

In the last case, we get a contradiction because otherwise by first case: va,xv /∈ E(G), but by
second case: va,xv ∈ E(G). Thus this case is impossible. �

Claim 2.111. Let x ∈ {b, c}. If Va,x 6= ∅, Vb,c 6= ∅, and E(Va, Va,x) induces a complete bipartite
graph, then the edge sets E(Va, Vb,c) and E(Va,x, Vb,c) induce complete bipartite graphs.

Proof. Let vax ∈ Va,x, v ∈ Vb,c and u ∈ Va. Suppose uv /∈ E(G). There are two cases: either
vvax ∈ E(G) or vvax /∈ E(G). Since the induced subgraph G[{a, b, c, u, v, vax}] is isomorphic to
G6,24 and G6,22, in the first case and in the second case, respectively, then we get a contradiction.
Thus uv ∈ E(G) and therefore the edge set E(Va, Vb,c) induces a complete bipartite graph.

Now suppose vvax /∈ E(G). By previous result, uv ∈ E(G). Since the induced subgraph
G[{a, b, c, u, v, vax}] is isomorphic to G6,25, then we get a contradiction and thus vvax ∈ E(G).
Therefore E(Va,x, Vb,c) induces a complete bipartite graph. �

By previous Claims we have the following cases:

(1) E(Va, Va,b ∪ Vac ∪ Vb,c) = ∅, and each edge set E(Va,b, Va,c) and E(Va,b ∪ Va,c, Vb,c) induces
a complete bipartite graph,

(2) E(Va, Va,b ∪ Vac) = ∅, and each edge set E(Va,b, Va,c) and E(Va ∪ Va,b ∪ Va,c, Vb,c) induces a
complete bipartite graph,

(3) E(Va, Va,b) = ∅, and each edge set E(Va ∪ Va,b, Va,c) and E(Va ∪ Va,b ∪ Va,c, Vb,c) induces a
complete bipartite graph,

(4) E(Va,b, Va,c) = ∅, and each edge set E(Va, Va,b ∪ Va,c ∪ Vb,c) and E(Va,b ∪ Va,c, Vb,c) induces
a complete bipartite graph and |Va| = |Va,b| = |Va,c| = 1,

(5) Vb,c = ∅, E(Va, Va,b ∪ Vac) = ∅, and E(Va,b, Va,c) induces a complete bipartite graph,
(6) Vb,c = ∅, E(Va, Va,x) = ∅, and E(Va ∪ Va,x, Va,y) induces a complete bipartite graph, where

x ∈ {a, b} and y ∈ {a, b} − x,
(7) Vb,c = ∅, E(Va, Va,b ∪ Va,c) induce a complete bipartite graph, E(Va,b, Va,c) = ∅ and |Va| =
|Va,b| = |Va,c| = 1,

(8) Va,y = ∅, E(Va, Va,x∪Vb,c) = ∅, and E(Va,x, Vb,c) induces a complete bipartite graph, where
x ∈ {a, b} and y ∈ {a, b} − x,

(9) Va,y = ∅, E(Va, Va,x) = ∅, and E(Va ∪ Va,x, Vb,c) induces a complete bipartite graph, where
x ∈ {a, b} and y ∈ {a, b} − x,

(10) Va,y = ∅, E(Va, Va,x ∪ Vb,c) and E(Va,x, Vb,c) induce a complete bipartite graph, where
x ∈ {a, b} and y ∈ {a, b} − x,

(11) Va,b ∪ Va,c = ∅, and E(Va, Vb,c) induces a complete bipartite graph,
(12) Va,b ∪ Va,c = ∅ and E(Va, Vb,c) = ∅,
(13) Va,b ∪ Va,c = ∅, and E(Va, Vb,c) induces a complete bipartite graph minus an edge,
(14) Va,b ∪ Va,c = ∅, |Vb,c| ≥ 2 and E(Va, Vb,c) induces a complete bipartite graph minus two

edges u1v and u2v, where v ∈ Vb,c,
(15) Va,b ∪ Va,c = ∅, |Va| = |Vb,c| = 2 and E(Va, Vb,c) induces a perfect matching,
(16) Va,y ∪ Vb,c = ∅ and E(Va, Va,x) induces a complete bipartite graph, where x ∈ {a, b} and

y ∈ {a, b} − x, and
(17) Va,y ∪ Vb,c = ∅ and E(Va, Va,x) = ∅, where x ∈ {a, b} and y ∈ {a, b} − x.
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Now we describe V∅, the set of vertices that are not adjacent with any vertex in {a, b, c}. Let
w ∈ V∅. The vertex w is adjacent with a vertex in Va ∪ Va,b ∪ Va,c ∪ Vb,c, because otherwise the
shortest path from w to {a, b, c} would contains the graph P5 as induced subgraph.

Claim 2.112. If Va,x 6= ∅ for some x ∈ {b, c}, then E(V∅, Va ∪ Va,x) = ∅.

Proof. Let w ∈ V∅, vax ∈ Va,x and u ∈ Va. Suppose w is adjacent with u or vax. Then there
are three possible cases:

(a) w is adjacent only with u,
(b) w is adjacent only with vax, or
(c) w is adjacent with both vertices u and vax.

First consider case (a). This case has two subcases: either u is adjacent with vax or not. If they are
adjacent, then G[{u,w, vax, b, c}] is isomorphic to P5. Since it is forbidden, then va is not adjacent
with vax. On the other hand, if they are not adjacent, then G[{a, b, c, w, u, vax}] is isomorphic
to G6,7. Therefore, case (a) is impossible. Now consider case (b). There are two possible cases:
either u is adjacent with vax or not. If they are adjacent, then G[{a, b, c, w, u, vax}] is isomorphic
to G6,14; which is forbidden. Thus u is not adjacent with vax. But if they are not adjacent, then
we have that G[{a, b, c, w, u, vax}] is isomorphic to G6,10. Thus case (b) cannot occur. Finally,
consider case (c). The subcases are: either u is adjacent to vax or not. If they are adjacent, then
G[{a, b, c, w, u, vax}] is isomorphic to G6,22; which is forbidden. Then u is not adjacent with vax
But if they are not adjacent, then the induced subgraph G[{u,w, vax, b, c}] is isomorphic to P5;
which is forbidden. Thus, we get that case (c) is impossible. And therefore, w is not adjacent with
u or vax. From which the result follows. �

Claim 2.113. Let x ∈ {b, c}. If Va,x 6= ∅, then E(V∅, Vb,c) = ∅. Moreover, if Va,x 6= ∅, then
V∅ = ∅.

Proof. Let w ∈ V∅, vax ∈ Va,x, va ∈ Va and vbc ∈ Vb,c. Suppose w is adjacent with vbc. By
Claim 2.112, we have that w is not adjacent with a vertex in Va∪Va,x. By Claims 2.110 and 2.111,
the vertex vax is adjacent with vbc, and one of the following three cases occur:

(a) va is adjacent with vax and vbc,
(b) va is adjacent only with vbc, and
(c) va is not adjacent with both vax and vbc.

Case (a) is not possible because the induced subgraph G[{va, vax, b, c, vbc, w}] would be isomorphic
to G6,12; which is impossible. In case (b), we have that G[{va, vax, b, c, vbc, w}] is isomorphic to
G6,4. Since it is forbidden, then this case is not possible. Finally, case (c) is not possible since
G[{va, a, x, vbc, w}] is isomorphic to P5 that is forbidden. Thus w is not adjacent with vbc. And
there is no vertex in V∅ adjacent with a vertex in G \ V∅. Therefore V∅ is empty. �

Thus by previous Claim, in cases (1) to (10), (16) and (17) the vertex set V∅ is empty. The
cases when Va,b ∪ Va,c = ∅ (cases (4) and (7)) correspond to a graph isomorphic to an induced
subgraph of F2

1 . The rest of these cases correspond to a graph isomorphic to an induced subgraph
of F1

1 .

Claim 2.114. Let wa ∈ V∅ such that wa is adjacent with u ∈ Va, and wa is not adjacent with a
vertex in Vb,c. Let wbc ∈ V∅ such that wbc is adjacent with v ∈ Vb,c and wbc is not adjacent with a
vertex in Va. Let w ∈ V∅ such that w is adjacent with u′ ∈ Va and v′ ∈ Vb,c. If E(Va, Vb,c) induces
a complete bipartite graph, then no two vertices of {wa, wbc, w} exist at the same time.
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Proof. Suppose wa and wbc exist at the same time. There there are two possible cases: either
wa and wbc are adjacent or not. If wa and wbc are adjacent, then G[{b, a, u, wa, wbc}] is isomorphic
to P5; which is impossible. If wa and wbc are not adjacent, then G[{b, c, u, v, wa, wbc}] is isomorphic
to G6,6; which is impossible. Then wa and wbc do not exist at the same time.

Suppose wa and w exist at the same time. There there are two possible cases: either u = u′

or u 6= u′. Suppose u = u′, then we have two possible cases: either wa and w are adjacent or not.
If wa and w are adjacent, then G[{wa, w, v′, b, a}] is isomorphic to P5; which is impossible. But if
wa and w are not adjacent, then G[{b, c, u, v′, wa, w}] is isomorphic to G6,11; which is impossible.
Then u 6= u′. Thus suppose u 6= u′. Note that in the induced subgraph G[{a, b, c, u, v′, wa, w}],
the vertex w is only adjacent with v′, and wa is only adjacent with u. Then applying previous
(wa, wbc) case in this induced subgraph, we get that w and wa do not exist at the same time.

Suppose wbc and w exist at the same time. There are two possible cases: either v = v′ or v 6= v′.
Suppose v = v′, then we have two possible cases: either wbc and w are adjacent or not. If wa and
wbc are adjacent, then G[{wbc, w, u, a, b}] is isomorphic to P5; which is impossible. But if wa and
wbc are not adjacent, then G[{b, c, u, v, wbc, w}] is isomorphic to G6,11; which is impossible. Then
v 6= v′. Suppose v 6= v′. Note that in the induced subgraph G[{a, b, c, u, v, wa, w}], the vertex w is
only adjacent with u, and wbc is only adjacent with v. Thus by applying first case in this induced
subgraph, we get that w and wbc do not exist at the same time. �

Claim 2.115. Let w ∈ V∅, u ∈ Va and v ∈ Vb,c. If E(Va, Vb,c) induces a complete bipartite graph
and w is adjacent with u and v, then E(w, Va ∪ Vb,c) induces a complete graph.

Proof. First we see that if v′ ∈ Vb,c − v, then w is adjacent with v′. Suppose w and v′ are
not adjacent. Since the induced subgraph G[{a, b, u, v, v′, w}] is isomorphic to the forbidden graph
G6,15, then we get a contradiction. Thus w is adjacent with each vertex in Vb,c. Now we see that
if u′ ∈ Va − u, then w is adjacent with u′. Suppose w and u′ are not adjacent. Since the induced
subgraph G[{a, b, u, u, u′, w}] is isomorphic to G6,15, then we get a contradiction. Therefore, w is
adjacent with each vertex in Va ∪ Vb,c. �

Claim 2.116. If |Va| = 2 and E(V∅, Va) 6= ∅, then either each vertex in V∅ is adjacent only
with one vertex in Va and V∅ is a clique, or each vertex in V∅ is adjacent with u1 and u2, and V∅
is trivial.

Proof. Let w,w′ ∈ V∅ and i, j ∈ {1, 2} with i 6= j. By proving that the following cases are
not possible, it follows that the only possible cases are that either E({u1, u2}, {w,w′}) is equal
to {wui, w′uj} and ww′ ∈ E(G), or E({u1, u2}, {w,w′}) is equal to {wui, wuj, w′ui, w′uj} and
ww′ ∈ E(G). Which implies the result.

(a) ww′, wuj, w
′uj /∈ E(G) and wui, w

′ui ∈ E(G),
(b) ww′, wuj, w

′ui /∈ E(G) and wui, w
′uj ∈ E(G),

(c) wuj, w
′ui /∈ E(G) and ww′, wui, w

′uj ∈ E(G),
(d) ww′, w′uj /∈ E(G) and wui, wuj, w

′ui ∈ E(G),
(e) w′uj /∈ E(G) and ww′, wui, wuj, w

′ui ∈ E(G), and
(f) w′uj, ww

′, wui, wuj, w
′ui ∈ E(G).

Since in cases (a), (b) and (d) the induced subgraph G[{a, b, u1, u2, w, w
′}] is isomorphic to G6,2,

G6,8, G6,10, respectively, then these cases are impossible. On the other hand, in case (c) the induced
graph G[{w,w′, uj, a, b}] is isomorphic to P5: which is impossible. Also in case (e) the induced
subgraph G[{w′, w, uj, a, b}] is isomorphic to P5; which is not possible. Finally in case (f) the
induced subgraph G[{a, b, c, u1, u2, w, w

′}] is isomorphic to G7,14; which is not possible. �
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Claim 2.117. If E(Va, Vb,c) induces a complete bipartite graph, and each vertex in V∅ is adjacent
only with one vertex in Va, then there is no vertex in V∅ adjacent with a vertex in Vb,c.

Proof. Let w ∈ V∅, v ∈ Vb,c. Suppose w is adjacent with u1 and v, but w is not adjacent
with u2. Since the induced subgraph G[{a, b, w, u1, u2, v}] is isomorphic to G6,17, then we get a
contradiction and the result follows. �

Claim 2.118. Let w ∈ V∅ and u ∈ Va. If E(Va, Vb,c) induces a complete bipartite graph,
E(w, Vb,c) 6= ∅ and E(w, Va) = ∅, then each vertex in V∅ is adjacent with only one vertex in Vb,c,
and V∅ is a clique of cardinality at most 2.

Proof. Let v, v′ ∈ Vb,c. Suppose w is adjacent with v and v′. Since G[{a, b, c, u, v, v′, w}] is
isomorphic to G7,9, then we get a contradiction. And we have that w is adjacent only with one
vertex in Vb,c

Now let w,w′ ∈ V∅ and v, v′ ∈ Vb,c such that wv ∈ E(G) and w′v′ /∈ E(G). Suppose v 6= v′.
There are two cases: either w and w′ are adjacent or not. If w and w′ are adjacent, then the induced
subgraph G[{b, c, v, u, w, w′}] is isomorphic to G6,6, then we get a contradiction and ww′ /∈ E(G).
Now if w and w′ are not adjacent, then the induced subgraph G[{w, v, u, v′, w′}] is isomorphic to
P5 and we get a contradiction. Thus v = v′.

Finally, let w,w′ ∈ V∅ adjacent with v ∈ Vb,c. Suppose w and w′ are not adjacent. Since
the induced subgraph G[{a, b, v, u, w, w′}] is isomorphic to G6,3, then we get a contradiction and
ww′ ∈ E(G). �

In case (11), by Claims 2.114, 2.115, 2.116, 2.117 and 2.118, we have the following possible
cases:

• each vertex in V∅ is adjacent with each vertex in Va ∪ Vb,c, and V∅ is a trivial graph,
• each vertex in V∅ is adjacent only with a vertex in Va, and V∅ is a clique of cardinality at

most 2, or
• each vertex in V∅ is adjacent only with a vertex in Vb,c, and V∅ is a clique of cardinality at

most 2.

Each of these cases corresponds to a graph isomorphic to an induced subgraph of F1
1 .

Remark 2.119. Let w ∈ V∅, u ∈ Va and v ∈ Vb,c. If uv /∈ E(G), and w adjacent with u or v,
then w is adjacent with both vertices u and v.

In case (12), by Claim 2.116 and Remark 2.119, we have that each vertex in V∅ is adjacent with
each vertex in Va ∪ Vb,c, and

• V∅ is a clique or a trivial graph when |Va| = 1, or
• V∅ is a clique when |Va| = 2.

It is not difficult to see that each of these graphs are isomorphic to an induced subgraph of F1
1

Claim 2.120. Let w ∈ V∅, u ∈ Va and v ∈ Vb,c. Suppose u is adjacent with each vertex in
Vb,c − v. If E(w, Vb,c ∪ {u}) 6= ∅, then one of the following statements holds:

• each vertex in V∅ is adjacent with u and v,or
• E(w, Vb,c ∪ {u}) induces a complete bipartite graph and |Vb,c − v| = 1.

Proof. First case follows by Remark 2.119. Now we check when w is adjacent with a vertex
in Vb,c − v. Let v′ ∈ Vb,c. Then u is adjacent with v′. Suppose w is adjacent only with v′. Since
the induced subgraph G[{a, b, u, v, v′, w}] is isomorphic to G6,9, then we have a contradiction and
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w is adjacent also with u or v. Thus by Remark 2.119, w is adjacent with u, v and v′. Finally by
applying Claim 2.115 to the induced subgraph G[{w, u}∪ (Vb,c−v)], we get that w also is adjacent
with each vertex in Vb,c − v. Thus w is adjacent with each vertex in {u} ∪ Vb,c.

Suppose the cardinality of Vb,c − v is at least 2. Take v, v′ ∈ Vb,c − v. Thus w is adjacent with
v, v′ and v′′. Since the induced subgraph G[{u, v, v′, v′′, a, w}] is isomorphic to G6,5, then we get a
contradiction. Thus the cardinality of Vb,c − v is at most 1. �

Claim 2.121. Let w ∈ V∅ and v ∈ Vb,c. Suppose u1 is adjacent with each vertex in Vb,c, and u2

is adjacent with each vertex in Vb,c − v. If E(w, Vb,c) 6= ∅, then either w is adjacent only with u2

and v, or |Vb,c| = 1 and E(w, Va ∪ Vb,c) induces a complete bipartite graph.

Proof. First case follows by Remark 2.119. Now we prove that if w is adjacent with u1, then
w is adjacent with u2 and v. Suppose w is adjacent only with u1. Since the induced subgraph
G[{a, b, u1, u2, v, w}] is isomorphic to G6,11, then we have a contradiction and w is adjacent also
with u2 or v. Thus by Remark 2.119, w is adjacent with u1, u2 and v. Finally, suppose |Vb,c| ≥ 2.
Let v′ ∈ Vb,c. By applying Claim 2.115 to the induced subgraph G[{w, u1} ∪ Vb,c], we get that w
also is adjacent with each vertex in Vb,c. Thus w is adjacent with each vertex in Va ∪ Vb,c. But
since G[{a, u1, u2, v, v

′, w}] is isomorphic to G6,18, then we get a contradiction, and |Vb,c| = 1. �

Let u ∈ Va and v ∈ Vb,c such that uv /∈ E(G). Therefore, in case (13), by Claims 2.116, 2.120
and 2.121, we have that one of the following cases holds:

• V∅ is a clique of cardinality at most 2, and each vertex in V∅ is adjacent with u and v,
• Va = {u}, |Vb,c \ {v}| ≤ 1, V∅ is trivial and each vertex in V∅ is adjacent with each vertex

in {u} ∪ Vb,c, or
• |Va| = 2, V∅ is trivial and Vb,c = {v} and each vertex in V∅ is adjacent with u1, u2 and v.

It can be checked that each of these graphs is isomorphic to an induced subgraph or a graph in
F1

1 .

Claim 2.122. Let w ∈ V∅ and v ∈ Vb,c such that v is not adjacent with u1 and u2. Suppose
|Vb,c| ≥ 2 and E(Va, Vb,c − v) induces a complete bipartite graph. If E(w, Vb,c) 6= ∅, then V∅ = {w},
and w is adjacent with u1, u2 and v.

Proof. By Remark 2.119, we have that if w is adjacent with one vertex of {v, u1, u2}, then w
is adjacent with v, u1 and u2. Now we see that w is not adjacent to any other vertex. Suppose w is
adjacent with v′ ∈ Vb,c− v. First consider the case when w is not adjacent with v, u1 and u2. Since
G[{b, v, v′, u1, u2, w}] is isomorphic to G6,6, then we get a contradiction and thus w is adjacent with
v, v′, u1, and u2. But if w is adjacent with v, v′, u1, and u2, then G[{b, v, v′, u1, u2, w}] is isomorphic
to G6,20; which is impossible. Then w is not adjacent with any vertex in Vb,c − v.

Suppose there exist another vertex w′ ∈ V∅. By previous discussion w′ is adjacent with v, u1

and u2. Since G[{a, b, w, w′, v, v′}] is isomorphic to G6,1, then we get a contradiction. Thus V∅ has
cardinality at most 1. �

Let v ∈ Vb,c such that u1v, u2v /∈ E(G). Therefore, in case (14), by Claims 2.116 and 2.122,
we have that V∅ = {w} and w is adjacent with u1, u2 and v. Then G is isomorphic to an induced
subgraph of F1

1 .

Claim 2.123. Let Vb,c = {v, v′} such that vu1, v
′u2 ∈ E(G) and vu2, v

′u1 /∈ E(G). If w ∈ V∅
and E(w, Va ∪ Vb,c) 6= ∅, then w is adjacent with u1, u2, v and v′.
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Proof. Since w is adjacent with a vertex in {u1, u2, v, v
′}, then w is adjacent with u1 and

v′, or w is adjacent with u2 and v. Suppose w is adjacent with u1 and v′, but w is not adjacent
with u2 and v. Since G[{a, u1, u2, v, v

′, w}] is isomorphic to G6,11, then we get a contradiction, and
therefore w is also adjacent with u2 and v. �

Let Vb,c = {v, v′} such that vu1, v
′u2 ∈ E(G) and vu2, v

′u1 /∈ E(G). Thus in case (15), by
Claims 2.116 and 2.123, we have that V∅ is trivial and each vertex in V∅ is adjacent only with
u1, u2, v and v′. Therefore, G is isomorphic to an induced subgraph of F1

1 .





CHAPTER 3

Critical ideals of signed multidigraphs with twins

Two vertices of a graph are twins if they have the same neighbors. There are two types of
twins depending on whether the twins are connected or not. Here, we study the critical ideals
of a graph having twin vertices. Specifically, we obtain relations between some evaluations of the
critical ideals of a graph G and the critical ideals of G with some vertices arbitrarily cloned. As a
consequence, we get an upper bound for the algebraic co-rank for a graph with twin vertices.

1. Critical ideals and signed multidigraphs

A signed multidigraph Gσ is a pair that consists of a multidigraph G (a digraph possibly with
multiple arcs) and a function σ, called the sign, from the edges of G into the set {1,−1}. Given
the set of variables XG = {xu : u ∈ V (G)} indexed by the vertices of G, and a principal ideal
domain (PID) P , the generalized Laplacian matrix L(Gσ, XG) of Gσ is the matrix whose entries
are given by

L(Gσ, XG)uv =

{
xu if u = v,

−σ(uv)muv1P otherwise,

where muv is the number of arcs leaving u and entering to v, and 1P is the identity of P . Moreover,
if P [XG] is the polynomial ring over P in the variables XG, then the critical ideals of Gσ are the
determinantal ideals given by

Ii(Gσ, XG) = 〈{det(m) : m is an i× i submatrix of L(Gσ, XG)}〉 ⊆ P [XG],

for all 1 ≤ i ≤ |V (G)|. We say that a critical ideal is trivial when it is equal to 〈1〉.

Definition 3.1. The algebraic co-rank γP(Gσ) of Gσ is the maximum integer i such that
Ii(Gσ, XG) is trivial.

Note that γP(Gσ) ≤ n− 1, since In(Gσ, XG) = 〈det(L(Gσ, XG))〉 6= 〈1〉. The algebraic co-rank
of a graph is closely related to the combinatorial properties of the graph. For instance, if Hσ

is an induced subgraph of Gσ, then Ii(Hσ, XH) ⊆ Ii(Gσ, XG) for all 1 ≤ i ≤ |V (H)| (see [22,
Proposition 3.3]). Therefore, γ(Gσ) ≤ γ(Hσ). In [22, Theorem 3.13] the following bounds were
obtained:

γP(G) ≤ 2(n− ω(G)) + 1 and γP(G) ≤ 2(n− α(G)).

We now introduce the concepts of duplication and replications of vertices which are key in our
study. Given a digraph G and a vertex v ∈ V (G), the duplication d(G, v) of v is the digraph
obtained from G by adding a new vertex v1 to G and the arcs

{v1u : u ∈ N+(v)} ∪ {uv1 : u ∈ N−(v)}.
In this case, v and v1 are called false twins. The replication r(G, v) of v on G is the graph obtained
from d(G, v) by adding the arcs vv1 and v1v. In this case, we say that v and v1 are true twins.
We say that two vertices of a digraph are twins if they are true or false twins. Also, let dk(G, v)

63
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and rk(G, v) denote the multidigraphs obtained from G by duplicating and replicating k times the
vertex v, respectively. For signed multidigraphs, the new arcs have the same multiplicity and sign
than the original arcs.

In general, given d ∈ ZV (G), let Gd be the graph obtained from G by duplicating dv times the
vertex v when dv > 0 and replicating −dv times the vertex v when dv < 0. Observe that G = G0.
Let V (Gd, v) denote the vertex set {v1, . . . , v|dv |} created by either duplicating or replicating the
vertex v. The following example illustrates these concepts.

Example 3.2. Let C4 be the cycle with four vertices and d = (−1, 1, 1, 1). Thus Cd
4 is the

graph with eight vertices shown in Figure 8.b.

v1 v2

v3v4

V (Cd
4 , v1) V (Cd

4 , v2)

V (Cd
4 , v3)V (Cd

4 , v4)

(a) (b)

Figure 8. The cycle with four vertices and C
(−1,1,1,1)
4 .

Critical ideals were firstly defined in [22] as an algebraic generalization of the critical group
of a graph. Which is now recalled. The Laplacian matrix L(Gσ) of Gσ is the evaluation of
L(Gσ, XG) at XG = DG, where DG is the degree vector of G. By considering L(Gσ) as a linear map
L(Gσ) : ZV → ZV , the cokernel of L(Gσ) is the quotient module ZV /ImL(Gσ). The torsion part
of this module is the critical group K(Gσ) of Gσ. The critical group has been studied intensively
on several contexts over the last 30 years: the group of components [34, 35], the Picard group
[9, 14], the Jacobian group [9, 14], the sandpile group [21], chip-firing game [14, 37], or Laplacian
unimodular equivalence [29, 38]. And recently, critical ideals have played an important role in the
classification and understanding of the graphs whose critical group has i invariant factors equal to
1, see [1, 2].

In general, the relations between the critical group and other parameters of the graph remain
unknown. Actually, researches have focused on two topics. One is to determine the exact structure
of K(G) for some special families of graphs. The other one is to study the relationship between
the critical group of a graph and that of graphs obtained from it by various constructions. There
are some natural constructions on graphs which behave well with respect the critical group. For
example, trivially the critical group K(G+H) of disjoint union G+H of two graphs G and H is
isomorphic to K(G)⊕K(H). More interesting, in [44] was proved that if the graphic matroids of
G and H are isomorphic, then their critical groups are isomorphic. This was proved by studying
the operations of splittings or mergings of one-vertex cuts and twistings of two-vertex cuts.

The purpose of this chapter is to study the critical ideals of signed multidigraphs having twin
vertices. Several graph families have twin vertices. For instance, the complete multipartite graphs,
the threshold graphs, the quasi-threshold graphs, or the cographs. Therefore, the description of
critical ideals of graphs with twins is an important step in the development on the theory of
critical ideals and critical group. In Section 2, we will obtain relations between some evaluations
of the critical ideals of a signed multidigraph G and the critical ideals of Gd, where d ∈ PV (G).
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As a consequence of this partial description, we will get an upper bound for the algebraic co-
rank of graphs with twins. This upper bound is crucial in the classification of the graphs whose
algebraic co-rank is less than or equal to an integer k (see [2, Section 2]). We will also state three
conjectures which lead into a wide and interesting panorama of the critical ideals. In Section 3,
we give a description of the critical ideals of the k-th duplication dk(G, v) of vertex v and k-th
replication rk(G, v) of vertex v in terms of some of the critical ideals of G.

2. An upper bound for the algebraic co-rank of graphs with twins

This section is meant to be a first approach to the theory of critical ideals of graphs with
twins. First, we present a core result, Lemma 3.3, which computes the minors of a special type of
matrices, the join of matrices. In particular, we will see that almost all minors of these matrices
are equal to zero. This lemma turns out to be very useful because the generalized Laplacian matrix
of several multidigraphs are the join of matrices. For instance, the generalized Laplacian matrix
of a graph obtained by duplicating or replicating its vertices. By using this lemma, we will get a
first description for the critical ideals of the graph obtained by the duplication or replication of
its vertices (Lemma 3.5 and Theorem 3.9). After, we will find that this non-accurate description
of the critical ideals of graphs with twin vertices is enough to we get an upper bound for the
algebraic co-rank of a graph with twins (Corollary 3.11). In fact, this bound is tight since the
complete graphs satisfy it (Example 3.12). This upper bound is important in the theory of critical
ideals of graphs. For instance, it can be used in the classification of the graphs whose algebraic
co-rank is less than or equal to an integer k.

First we define the join of matrices and prove a lemma that will be frequently used in this
chapter. Let P be a commutative ring with identity and let Mn(P) denote the set of n×n matrices
with entries on P . Given two vectors a ∈ Pq1 and b ∈ Pq2 , and two matrices P ∈Mp1×p2(P) and
Q ∈Mq1×q2(P) such that p1 + q1 = p2 + q2, then the join J(P, a;Q,b) is the matrix[

P 1Tp1b
aT1p2 Q

]
∈Mp1+q1(P).

Note that L(G∨H,XG∨H) = J(L(G,XG),−1;L(H,XH),−1). The following lemma describes the
determinant of the join J(P, a;Q,b).

Lemma 3.3. If P ∈ Mp1×p2(P), Q ∈ Mq1×q2(P) with p1 + q1 = p2 + q2, a ∈ Pq1, and b ∈ Pq2,
then

det(J(P, a;Q,b)) =



det(P ) · det(Q)− det

[
P 1T

1 0

]
· det

[
0 b

aT Q

]
if p1 = p2,

det
[
P 1T

]
· det

[
b

Q

]
if p1 = p2 + 1,

det

[
P

1

]
· det

[
aT Q

]
if p2 = p1 + 1,

0 otherwise.
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Proof. The proof follows by using induction on p1 + p2. Note that, if P ∈ M1×0(P), then
[ P 1 ] = [1]. Also, if P ∈M0×1(P), then [ P 1 ]T = [1]. �

Note that all the square submatrices of a join of matrices are in fact join of matrices. Therefore,
almost all minors of the join of matrices are equal to zero. This fact will be useful in getting a
description of the critical ideals of a graph with twin vertices (see Lemmas 3.5, 3.6, 3.16 and 3.21).

Let [n] = {1, ..., n}. Given two sets I = {i1, . . . , ir} ⊆ [n], J = {j1, . . . , js} ⊆ [n], and a matrix
M ∈ Mn(P), the submatrix of M obtained by the rows i1, . . . , ir and the columns j1, . . . , js will
be denoted by M [I;J ]. On the other hand, given a ∈ Pn, L ∈Mn(P), and 1 ≤ j ≤ n. Let

minorsj(L, a) =

{
det

[
a′

M

]
:

[
a′

M

]
∈Mj

([
a
L

])}
and

minorsj(a, L) =
{

det
[

a′T M
]

:
[

a′T M
]
∈Mj

([
aT L

])}
.

Claim 3.4. Let G be a signed multidigraph with n ≥ 2 vertices and v be a vertex of G. Suppose
L(G,XG) = J(xv, a;L(G − v,XG−v),b), for some a,b ∈ Pn−1. Then the critical ideal Ij(G,XG)
is equal to

〈minorsj(L(G− v,XG−v)),minorsj(a, L(G− v,XG−v)),minorsj(L(G− v,XG−v),b),

{xv · det(M) + det(J(0, a′;M,b′)) : J(xv, a
′;M,b′) ∈Mj(L(G,XG))}〉,

when 1 ≤ j ≤ n− 1, and it is equal to

〈xv · det(L(G− v,XG−v)) + det(J(0, a;L(G− v,XG−v),b))〉 ,

when j = n.

Proof. The proof is simple, and similar to the proof of [22, Claim 3.12]. �

Now we give a description of the critical ideals of d(G, v) in terms of the critical ideals of G. Let
X ⊆ XG and a ∈ P |X|. Through the thesis, I(G,XG)|X=a will denote the evaluation of I(G,XG)
at X = a.

Lemma 3.5. Let G be a signed multidigraph with n ≥ 2 vertices and v be a vertex of G. Then

Ij(d(G, v), Xd(G,v)) ⊆ 〈xv0 , xv1 , Ij(G,XG)|xv=0〉,

for all 1 ≤ j ≤ n. Moreover, Ij(d(G, v), Xd(G,v)) is trivial if and only if Ij(G,XG)|xv=0 is trivial.

Proof. Suppose L(G,XG) = J(xv, a;L(G − v,XG−v),b), for some a,b ∈ Pn−1. Let I, I ′ ⊆
[n + 1] be two sets of size j, and I{1,2} = {1, 2} ∩ I and I ′{1,2} = {1, 2} ∩ I ′. Note that

L(d(G, v), Xd(G,v)) = J(diag(xv1 , xv0), a;L(G− v,XG−v),b). Let

mI,I′ = det(L(d(G, v), Xd(G,v))[I, I ′]) ∈ Ij(d(G, v), Xd(G,v)).

If I{1,2} ∩ I ′{1,2} = {a}, then Lemma 3.3 implies that for some matrix J(xv, a
′;M,b′) ∈

Mj(L(G,XG)), and

mI,I′ = det(J(xva , a
′;M,b′)) = xva · det(M) + det(J(0, a′;M,b′)).
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If |I{1,2}|, |I ′{1,2}| = 1 and I{1,2}∩I ′{1,2} = ∅, thenmI,I′ = det(J(0, a′;M,b′)) for some J(0, a′;M,b′) ∈
Mj(L(G,XG)). On the other hand, since det(J(x, 1; 1, 0)) = det(J(x, 0; 1, 1)) = x, then

mI,I′ ∈

{
{xvi ·minorsj−1(a, L(G− v,XG−v))}1

i=0 if |I{1,2}| = 2, |I ′{1,2}| = 1,

{xvi ·minorsj−1(L(G− v,XG−v),b)}1
i=0 if |I{1,2}| = 1, |I ′{1,2}| = 2.

Finally, since det(J(diag(xv1 , xv0), (1, 1); 0, (1, 1))) = −(xv1 + xv0), then Lemma 3.3 implies that
mI,I′ belongs to

Sj(G, v) = {xv0xv1 · det(M) + (xv0 + xv1) · det(J(0, a′;M,b′)) : J(xv, a
′;M,b′) ∈Mj−1(L(G,XG))} ,

when I{1,2} and I ′{1,2} are equal to {1, 2}.
Let minorsj(a, L,b) = {det(J(0, a′;M,b′)) : J(0, a′;M,b′) ∈Mj (J(0, a;L,b))}. Therefore,

for 1 ≤ j ≤ n− 1, the j-th critical ideal of the duplication has the following expression:

Ij(d(G, v), Xd(G,v)) = 〈minorsj(L(G− v,XG−v)), {xvi ·minorsj−1(L(G− v,XG−v))}1
i=0 ,

minorsj(a, L(G− v,XG−v)), {xvi ·minorsj−1(a, L(G− v,XG−v))}1
i=0 ,

minorsj(L(G− v,XG−v),b), {xvi ·minorsj−1(L(G− v,XG−v),b)}1
i=0 ,(7)

minorsj(a, L(G− v,XG−v),b), Sj(G, v)〉.

We assume, for the sake of clarity, that

minors0(a, L(G− v,XG−v)) = minors0(L(G− v,XG−v),b) = ∅,
minors1(a, L(G− v,XG−v)) = {ai : 1 ≤ i ≤ n},
minors1(L(G− v,XG−v),b) = {bi : 1 ≤ i ≤ n},

minors1(a, L(G− v,XG−v),b) = S1(G, v) = ∅, and

minors2(a, L(G− v,XG−v),b) = S2(G, v) = xv0xv1 .

Therefore, I1(d(G, v), Xd(G,v)) = 〈xv0 , xv1 , I1(G,XG)|xv=0〉 and

I2(d(G, v), Xd(G,v)) ⊆ 〈xv0 , xv1 , I2(G,XG)|xv=0〉.

Besides, it is not difficult to see that the ideal In(d(G, v), Xd(G,v)) is equal to

〈{xvi · det(L(G− v,XG−v))}1
i=0 , det(J(0, a;L(G− v,XG−v),b)),

{xvi ·minorsn−1(a, L(G− v,XG−v))}1
i=0 , {xvi ·minorsn−1(L(G− v,XG−v),b)}1

i=0 , Sn(G, v)〉.

On the other hand, by Claim 3.4 we have that Ij(G,XG)|xv=0 is equal to

〈minorsj(L(G−v,XG−v)),minorsj(a, L(G−v,XG−v)),minorsj(L(G−v,XG−v),b),minorsj(a, L(G−v,XG−v),b)〉,

for 1 ≤ j ≤ n−1, and In(G,XG)|xv=0 = 〈det(L(G,XG)|xv=0)〉 = 〈det(J(0, a;L(G−v,XG−v),b))〉.
Then

Ij(d(G, v), Xd(G,v)) ⊆ 〈xv0 , xv1 , Ij(G,XG)|xv=0〉
for 1 ≤ j ≤ n. Finally, it is not difficult to see, from previous equalities, that Ij(d(G, v), Xd(G,v))
is trivial if and only if Ij(G,XG)|xv=0 is trivial. �

Now we give a description of the critical ideals of the replication of a vertex of a signed
multidigraph.
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Lemma 3.6. Let G be a signed multidigraph with n ≥ 2 vertices and v be a vertex of G. Then

Ij(r(G, v), Xr(G,v)) ⊆ 〈xv0 + 1, xv1 + 1, Ij(G,XG)|xv=−1〉,
for all 1 ≤ j ≤ n. Moreover, Ij(r(G, v), Xr(G,v)) is trivial if and only if Ij(G,XG)|xv=−1 is trivial.

Proof. Suppose L(G,XG) = J(xv, a;L(G − v,XG−v),b), for some a,b ∈ Pn−1. Similarly
to Lemma 3.5, we have that for 1 ≤ j ≤ n − 1, the j-th critical ideal of the replication has the
following expression:

Ij(r(G, v), Xr(G,v)) = 〈minorsj(L(G− v), X), {(xvi + 1) ·minorsj−1(L(G− v,XG−v))}1
i=0 ,

minorsj(a, L(G− v,XG−v)), {(xvi + 1) ·minorsj−1(a, L(G− v,XG−v))}1
i=0 ,

minorsj(L(G− v,XG−v),b), {(xvi + 1) ·minorsj−1(L(G− v,XG−v),b)}1
i=0 ,(8)

Rj(G, v), S̃j(G, v)〉,
where Rj(G, v) = {det(J(−1,a′;M,b′)) = −det(M) + det(J(0,a′;M,b′)) : J(xv,a

′;M,b′) ∈Mj(L(G,XG))}
and S̃j(G, v) = {(xv0 +1)(xv1 +1)·det(M)+((xv0 +1)+(xv1 +1))·det(J(−1,a′;M,b′)) : J(xv,a

′;M,b′) ∈
Mj−1(L(G,XG))}. Besides, the n-th critical ideal of the replication has the following expression:

In(r(G, v), Xr(G,v)) = 〈{(xvi + 1) · det(L(G− v,XG−v))}1
i=0 , det(J(−1, a;L(G− v,XG−v),b)),

{(xvi + 1) ·minorsn−1(a, L(G− v,XG−v))}1
i=0 ,

{(xvi + 1) ·minorsn−1(L(G− v,XG−v),b)}1
i=0 , S̃n(G, v)〉.

On the other hand, by Claim 3.4 we have that Ij(G,XG)|xv=−1 is equal to

〈minorsj(L(G− v,XG−v)),minorsj(a, L(G− v,XG−v)),minorsj(L(G− v,XG−v),b), Rj(G, v)〉,
for all 1 ≤ j ≤ n − 1, and In(G,XG)|xv=−1 = 〈det(L(G,XG))|xv=−1〉 = 〈det(J(−1, a;L(G −
v,XG−v),b))〉. Therefore,

Ij(r(G, v), Xr(G,v)) ⊆ 〈xv0 + 1, xv1 + 1, Ij(G,XG)|xv=−1〉
for all 1 ≤ j ≤ n. Finally, it is clear that Ij(r(G, v), Xr(G,v)) is trivial if and only if Ij(G,XG)xv=−1

is trivial. �

Remark 3.7. Note that Ij(G,XG)|xv=0 is trivial if and only if there exists p ∈ Ij(G,XG) such
that p = xvq + 1, and Ij(G,XG)xv=−1 is trivial if and only if there exists p ∈ Ij(G,XG) such that
p = (xv + 1)q + 1. However, p ∈ P [X] and a, b ∈ P such that p|{xu=a,xv=b} = 1 do not imply that
p = (xu − a) · (xv − b) · q for some q ∈ P [X \ {xu, xv}].

Next example shows a signed digraph satisfying the equality in the ideal inclusions of Lem-
mas 3.5 and 3.6.

Example 3.8. Let G be the cycle with five vertices, where the arcs v2v1 and v1v5 have negative
sign, see Figure 9. It is not difficult to check that the algebraic co-rank of the graph G is equal to
3, when P = Z. Since I4(G,XG) is given by 〈x1x2 + x4 + 1, x2x3 − x5 − 1, x3x4 + x1 − 1, x4x5 −
x2− 1, x1x5 +x3 + 1〉, then I4(G,XG)|xv1=0 = 〈x3 + 1, x4 + 1, x3x4− 1, x2x3−x5− 1, x4x5−x2− 1〉
= 〈x3 + 1, x4 + 1, x2 + x5 + 1〉 and

I4(G,XG)|xv1=−1 = 〈−x5 + x3 + 1,−x2 + x4 + 1, x4x5 − x2 − 1, x3x4 − 2, x2x3 − x5 − 1〉
= 〈x3 − x5 + 1, x2 − x4 − 1, x4x5 − x4 − 2〉.
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v1

v2

v3 v4

v5− −
L(G,XG) =


x1 −1 0 0 1
1 x2 −1 0 0
0 −1 x3 −1 0
0 0 −1 x4 −1
−1 0 0 −1 x5


Figure 9. A signed multidigraph G with five vertices and its generalized Laplacian matrix.

On the other hand, the 4-th critical ideal I4(d(G, v1), Xd(G,v1)) is equal to 〈xv01 , xv11 , x3 + 1, x4 +

1, x2 + x5 + 1〉, and the 4-th critical ideal I4(r(G, v1), Xr(G,v1)) is equal to

〈xv01 + 1, xv11 + 1, x3 − x5 + 1, x2 − x4 − 1, x4x5 − x4 − 2〉.

Thus this example satisfies also the opposite inclusions of Lemma 3.5 and 3.6.

Successive applications of Lemmas 3.5 and 3.6 leads to the following general result:

Theorem 3.9. Let G be a signed multidigraph with n ≥ 2 vertices and d ∈ Zn. Then the j-th
critical ideal Ij(G

d, XGd) is included in the ideal〈
{{xvi}dvi=0 : dv ≥ 1}, {{xvi + 1}−dvi=0 : dv ≤ −1}, Ij(G,XG)|{xv=−1 :dv≤−1}∪{xv=0 :dv≥1}

〉
,

for 1 ≤ j ≤ n. Moreover, Ij(G
d, XGd) is trivial if and only if Ij(G,XG)|{xv=−1 :dv≤−1}∪{xv=0 :dv≥1}

is trivial. That is, there exists p ∈ Ij(G,XG) such that p|{xv=−1 :dv≤−1},{xv=0 :dv≤1} = 1.

Proof. The result turns out by the successive applications of Lemmas 3.5 and 3.6. �

Next example illustrates Lemmas 3.5 and 3.6 and Theorem 3.9.

Example 3.10. Let G be the graph on Figure 10. By using a computer algebra system, we can

v1 v2

v3 v4

v5 v6

L(G,XG) =


x1 0 −1 −1 0 −1
0 x2 −1 −1 −1 0
−1 −1 x3 0 −1 −1
−1 −1 0 x4 −1 −1
0 −1 −1 −1 x5 −1
−1 0 −1 −1 −1 x6



Figure 10. A graph G with eight vertices and its generalized Laplacian matrix.
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see that γZ(G) = 3 and its non-trivial critical ideals are the following:

I4(G,XG) = 〈x3, x4, x1x2 + 1, (x1 − 1)x6 − 2, (x2 − 1)x5 − 2, x1x5 + x5 + 2x1, x2x6 + x6 + 2x2,

x5x6 + x6 + x5 + 2〉,
I5(G,XG) = 〈x2x4x5(x6 + 1)− x4x6, x2x3x4 + x2x3x6 + x2x4x6 + 2x2x3 + 2x2x4 + x3x6 + x4x6,

x1x3x4 + x1x3x5 + x1x4x5 + 2x1x3 + 2x1x4 + x3x5 + x4x5, x1x4x6(x5 + 1)− x4x5,

x1x4(x2x6 + x2 + x6)− x4, x1x3(x2x6 + x2 + x6)− x3, (x3 + x4)(x5x6 + x5 + x6 + 2) + x3x4,

x1x2(x6 + x5) + x5x6(x1 + x2) + 2(x1x2 + x1x6 + x2x5)− x5 − x6 − 2〉,
I6(G,XG) = 〈det(L(G,XG))〉.
From these equalities and Theorem 3.9, we can easily obtain that the critical ideals I4(d(G, vi), Xd(G,vi))
and I4(r(G, vi), Xr(G,vi)) are trivial, for i ∈ {1, 2} and j ∈ {3, 4}. Further, the ideals I4(Ge1−e6 , X),
I4(Ge1−e5 , X), I4(Ge2−e5 , X), I4(Ge2−e6 , X), I4(Ge5−e6 , X), I4(Ge6−e5 , X) are also trivial. On the
other hand,

I4(d(G, v6), X) = 〈x6, x6′ , I4(G,XG)|x6=0〉 = 〈x6, x6′ , 2, x3, x4, x5, x1x2 + 1〉,

I5(d(G, v6), X) = 〈x3x6, x3x6′ , x4x6, x4x6′ , x3x5, x4x5, x6(x1x2 + 1), x6′(x1x2 + 1),

x6(x2x5 − x5 − 2), x6′(x2x5 − x5 − 2), x6(x1x5 + x5 + 2x1), x6′(x1x5 + x5 + 2x1),

x6x6′(x1 − 1)− 2(x6 + x6′), x6x6′(x2 + 1) + 2x2(x6 + x6′),

(x6x6′ + x6 + x6′)(x5 + 1) + (x6 + x6′), x3x4 + 2x3 + 2x4,

x3(x1x2 − 1), x4(x1x2 − 1), x1x2x5 + 2x1x2 + 2x2x5 − x5 − 2〉
( 〈x6, x6′ , I5(G,XG)|x6=0〉, and

I5(Ge6−e5 , X) = 〈2(x5′+1), 2(x5+1), x5x5′−1, x6+x6′ , x6(x1−1), x6(x2+1), x6(x5+1),

x6(x5′+1), x3, x4, x1x2−2x2−1〉
( 〈x5 + 1, x5′ + 1, x6, x6′ , I5(G,XG)|{x6=0,x5=−1}〉.

Note that, I5(G,XG)|{x6=0,x5=−1} = 〈x3, x4, x1x2 − 2x2 − 1〉, and x5x5′ − 1 = (x5 + 1)(x5′ + 1) −
(x5 + 1)− (x5′ + 1).

As consequence of Theorem 3.9, we get the following bound for the algebraic co-rank of a signed
multidigraph with twins.

Corollary 3.11. Let G be a signed multidigraph with n vertices. Then γP(Gd) ≤ n, for all
d ∈ Zn. Moreover, γP(Gd) = γP(Gsupp(d)), where

supp(d)v =


−1 if dv < 0,

1 if dv > 0,

0 otherwise.

Proof. Let g = γP(Gδ) and d ∈ Zn such that supp(d) = δ. By applying Theorem 3.9 to Gδ,
we have that the non-trivial critical ideal Ig+1(Gδ, XGδ) is included in the ideal〈

{xv0 , xv1 : δv = 1}, {xv0 + 1, xv1 + 1 : δv = −1}, Ig+1(G,XG)|{xv=−1 : δv=−1}∪{xv=0 : δv=1}
〉

and Ig+1(G,XG)|{xv=−1 :dv≤−1}∪{xv=0 :dv≥1} = Ig+1(G,XG)|{xv=−1 : δv=−1}∪{xv=0 : δv=1} 6= 〈1〉. Since
(xvp)|xv=0 = 0 and ((xv + 1)p)|xv=−1 = 0 for all p ∈ P [X], then

Ig+1(Gδ, XGδ)|{xv=−1 : (d−δ)v≤−1}∪{xv=0 : (d−δ)v≥1} ⊆ Ig+1(G,XG)|{xv=−1 :dv≤−1}∪{xv=0 :dv≥1} 6= 〈1〉.
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Therefore, applying Theorem 3.9 to Gδ and d− δ, we have that

Ig+1((Gδ)d−δ, X(Gδ)d−δ) = Ig+1(Gd, XGd) 6= 〈1〉

for all d with supp(d) = δ, that is,

γP(Gd) = γP(Gδ).

On the other hand, since In+1(G,XG) = 〈0〉, then

In+1(Gd, X) ⊆ 〈{xv, . . . , xvdv : dv ≥ 1}, {xv + 1, . . . , xv−dv + 1 : dv ≤ −1}〉 6= 〈1〉

and we get the result. �

Next example show us that the upper bound given in Corollary 3.11 is tight.

Example 3.12. Let Kn be the complete graph with n ≥ 2 vertices. By [22, Theorem 3.15] and
[22, Theorem 3.16], we have that γP(Kn) = 1 and In(Kn, XKn) = 〈P 〉, where

P =
n∏
j=1

(xj + 1)−
n∑
i=1

∏
j 6=i

(xj + 1).

Since the evaluation of P at {x1 = 0, · · · , xn−1 = 0, xn = −1} is equal to −1, then Theorem 3.9
and Corollary 3.11 imply γP(Kd

n ) = n for any d ∈ Zn such that di ≥ 1 when i ∈ [n − 1] and
dn ≤ −1. Also, [22, Theorem 3.16] implies

In−1(Kn, X) =

〈{∏
i∈I

(xi + 1) : I ⊆ [n] and |I| = n− 2

}〉
.

Since In−1(Kn, X){xi=0 : i∈[n−1]} = 〈1〉, then Theorem 3.9 and Corollary 3.11 imply γP(Kd
n ) = n− 1

for any d ∈ Zn−1 such that di ≥ 1 when i ∈ [n− 1].

Corollary 3.11 is useful in classification and understanding of the graphs with algebraic co-rank
less than or equal to an integer fixed k. A graph G is forbidden for the graphs with algebraic
co-rank less than or equal to k if and only if γ(G) ≥ k+1. One step in the classification is to prove
that the graphs with no forbidden induced subgraph have algebraic co-rank at most k. This was
done in [1] for k = 1, 2, by a large computation of the minors of their corresponding generalized
Laplacian matrices. But now this can be easily checked by evaluations of the critical ideals of few
graphs, as performed in [2, Section 2].

2.1. Some conjectures. In light of the previous results we conjecture the following.

Conjecture 3.13. If γP(G− v) = γP(G) for all v ∈ V (G), then G has at least a pair of twin
vertices.

Conjecture 3.14. If γP(G) < n
2

with n ≥ 5 vertices, then G has at least a pair of twin
vertices.

Conjecture 3.15. If G is twin-free, then γP(G) ≥ n
2
.

Note that Conjecture 3.13 imply Conjecture 3.14. And Conjecture 3.14 is equivalent to Con-
jecture 3.15.
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3. Critical ideals of graphs with twin vertices

In this section we give a description of the critical ideals of dk(G, v) and rk(G, v) in terms of
some of the critical ideals of G. More precisely, if g′ = γP(d(G, v)) and λ is a constant that depends
on G and v, then Theorem 3.19 gives a description of Ig′+k(d

i+λ+k(G, v), Xdi+λ+k(G,v)) in terms of

Ig′+k(d
k−1(G, v), Xdk−1(G,v)). And Theorem 3.22 gives a similar description of the critical ideals of

Ig′+k(r
i+λ+k(G, v), Xri+λ+k(G,v)). We begin by giving a description of the critical ideals of dk(G, v)

in terms of the critical ideals of G and some minors of G − v. This description generalizes the
description of the critical ideals of d(G, v) given in Equation 7.

Before to establish the result, we introduce some notation. Given a subset S of the natural
numbers, let

(
S
l

)
denote the set of all subsets of S of cardinality exactly l. Moreover, if v is a

vertex of a signed multidigraph, let P S
l (v) =

{∏
c∈C xvc : C ∈

(
S
l

)}
. We take P S

0 (v) = {1}. And

for simplicity, P k
l (v) denote P

{0}∪[k]
l (v).

Lemma 3.16. Let G be a signed multidigraph with n vertices and v ∈ V (G). If k, j ≥ 1 and
m = min(k, j − 1), then

Ij(d
k(G, v), Xdk(G,v)) =

〈{
P k
l (v) · Ij−l(G,XG)|xv=0

}m−1

l=0
, P k

m(v) · Ij−m(G− v,XG−v),

P k
m(v) ·minorsj−m(a, L(G− v,XG−v)),

P k
m(v) ·minorsj−m(L(G− v,XG−v),b), Skj (G, v)

〉
,

where Skj (G, v) is equal to P k
j (v) when j ≤ k + 1, and is equal to{

det(M) ·
k∏
t=0

xvt + det(J(0, a′;M,b′)) ·
k∑
t=0

∏
s 6=t

xvs : J(xv, a
′;M,b′) ∈Mj−k(L(G,XG))

}
when j ≥ k + 2.

Proof. Suppose the generalized Laplacian matrix L(dk(G, v), Xdk(G,v)) of dk(G, v) is equal to

J(diag(xv0 , ..., xvk), a;L(G− v,XG−v),b),

for some a,b ∈ Pn−1. Let I, I ′ ⊆ [n+ k] be two sets of size j, h = |I ∩ [k+ 1]|, h′ = |I ′ ∩ [k+ 1]|,
and

mI,I′ = det(L(dk(G, v), Xdk(G,v))[I, I ′]).
Clearly 0 ≤ h, h′ ≤ m + 1. If h, h′ = 0, then mI,I′ ∈ minorsj(L(G − v,XG−v)) and mI,I′ ∈
Ij(G − v,XG−v). First suppose h = 0. If h′ ≥ 2, then two columns of L(dk(G, v), Xdk(G,v))[I, I ′]
are equal, and mI,I′ = 0. Also, if h′ = 1, then mI,I′ ∈ minorsj(a, L(G − v,XG−v)). We can use
similar arguments when h′ = 0. Thus, we assume that h, h′ ≥ 1.

Now by Lemma 3.3 we have that

mI,I′ =



0 if |h− h′| ≥ 2,

det
[
P 1

]
· det

[
b′

Q

]
if h− h′ = 1,

det

[
P

1

]
· det

[
a′T Q

]
if h′ − h = 1,

det(P ) · det(Q)− det(J(P,1; 0,1)) · det(J(0, a′;Q,b′)) if h = h′,
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for some submatrix P of diag(xv0 , ..., xvk), some submatrix Q of L(G − v,XG−v), and some sub-
vectors a′ of a and b′ of b. Clearly, det

[
P 1

]
6= 0 if and only if (up to row and column

permutations)

P =

[
diag(xvi1 , ...xvih′ )

0

]
.

If h− h′ = 1, then mI,I′ ∈ P k
h′(v) ·minorsj−h′(L(G− v,XG−v),b) ( P k

h′(v) · Ij−h′(G,XG)|xv=0, for
all 1 ≤ h′ ≤ m. Similarly, if h′ − h = 1, then mI,I′ ∈ P k

h (v) · minorsj−h(L(G − v,XG−v),b) (
P k
h (v) · Ij−h(G,XG)|xv=0, for all 1 ≤ h ≤ m. On the other hand, if h = h′ we have the following

cases:
Case I: If P has at least two zero rows, then det(P ) = 0, det(J(P,1; 0,1)) = 0, and thus mI,I′ = 0.

Case II: If P has only one zero row, then det(P ) = 0, det(J(P,1; 0,1)) =
∏h−1

t=1 xvit , and

mI,I′ =
h−1∏
t=1

xvit · det(J(0, a;Q,b′)),

for some (j−h+ 1)× (j−h+ 1)-submatrix J(0, a;Q,b′) of L(G,XG)|xv=0. Thus mI,I′ ∈ P k
h−1(v) ·

minorsj−h+1(a, L(G− v,XG−v),b) ( P k
h−1(v) · Ij−h+1(G,XG)|xv=0, for all 2 ≤ h ≤ m− 1.

Case III: If P has no zero row, then

mI,I′ =

{∏h
t=1 xvit · det(Q) +

∑h
t=1

∏
s 6=t xvis · det(J(0, a′;Q,b′)) if h < j,∏h

t=1 xvit if h = j,

for some (j−h+ 1)× (j−h+ 1)-submatrix J(0, a′;Q,b′) of L(G,XG)|xv=0, and for all 1 ≤ h ≤ m.
Moreover, since

h∑
t=1

∏
s 6=t

xvis · det(J(0, a′;Q,b′)) ∈ P k
h−1(v) ·minorsj−h+1(a, L(G− v,XG−v),b)

and
∏h

t=1 xvit · det(Q) = mI,I′ −
∑h

t=1

∏
s 6=t xvis · det(J(0, a′;Q,b′)) ∈ P k

h (v) · minorsj−h(L(G −
v,XG−v)) ( P k

h (v) · Ij−h(G,XG)|xv=0 for all 0 ≤ h ≤ m− 1, then we get the result. �

Remark 3.17. Note that Ij(G,XG)|xv=0 is equal to

〈minorsj(L(G− v,XG−v)),minorsj(a, L(G− v,XG−v)),

minorsj(L(G− v,XG−v),b),minorsj(a, L(G− v,XG−v),b)〉
and the i-th critical ideal Ii(Tk+1, XTk+1

) of the graph with k+1 isolated vertices is equal to 〈P k
i (v)〉.

Moreover, if m = min(k, j − 1), then

Ij(d
k(G, v), Xdk(G,v))|xv0=0 =

〈{
P

[k]
l (v) · Ij−l(G,XG)|xv=0

}m
l=0

〉
.

That is, Ij(d
k(G, v), Xdk(G,v))|xv0=0 behaves almost equally as the j-th critical ideal of the disjoint

union of Tk+1 and G.

In next example we show how to use the description of Ij(d
k(G, v), Xdk(G,v))|xv0=0.

Example 3.18. Let Q3 be the hypercube with V (Q3) = {vi}8
i=1. The reader can check that

γZ(Q3) = 4, γZ(d(Q3, v8)) = 5, I7(d(Q3, v8), Xd(Q3,v8))|x8=0 = 〈xv18 ·I6(Q3, XQ3)|x8=0, I7(Q3, XQ3)|x8=0〉,
where

I6(Q3, XQ3)x8=0 = 〈x1 − x6, x2 − 3x7, x3 − x6, x4 − x7, x5 − x7, x6x7 − 1〉 , and
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I7(Q3, XQ3)|x8=0 = 〈x2x4x6 − x4x5x6 − x4x6x7 − x5x6x7 − x2 − x4 + 2x5 + 2x7,

x2x3x5 − x3x4x5 − x3x4x7 − x3x5x7 − x2 + 2x4 − x5 + 2x7,

x1x2x7 − x1x4x5 − x1x4x7 − x1x5x7 − x2 + 2x4 + 2x5 − x7,

x1x3x7 − x1x4x6 + x3x4x6 − x1x6x7 + x1 − 2x3 + x6,

x1x3x5 + x1x4x6 − x3x4x6 − x3x5x6 − 2x1 + x3 + x6,

x1x4x5x6 + x1x4x6x7 + x1x5x6x7 − x1x5 − x5x6 − 2x4x6 − 2x1x7 + 3,

x3x4x5x6 + x3x4x6x7 + x3x5x6x7 − 2x3x5 − 2x4x6 − x3x7 − x6x7 + 3〉.

Now we are ready to give a more accurate description of some critical ideals of di+k(G, v).
Given d, d′ ≥ 0, let

λ(d, d′) =

{
0 if d, d′ = 0,

1 otherwise.

Theorem 3.19. Let G be a signed multidigraph, v ∈ V (G), g = γP(G), g′ = γP(d(G, v)),
d = g − γP(G− v), d′ = g′ − g, and λ = λ(d, d′). If g ≥ 1, then 0 ≤ d+ d′ ≤ 2 and

Ig′+k(d
k+λ+i(G, v), Xdk+λ+i(G,v)) =

〈
P k+λ+i
k (v),

{
P k+λ+i
l (v) · Ig′+k−l(G,XG)|xv=0

}k−1

l=0

〉
for all k ≥ 1 and i ≥ 0.

Proof. Since Ij(G,XG)xv=0 ⊆ Ij−2(G−v,XG−v), then by Lemma 3.5 we have that 0 ≤ d+d′ ≤
2. On the other hand, sincem = k+λ, then Lemma 3.16 implies that Ig′+k(d

k+λ+i(G, v), Xdk+λ+i(G,v))
is equal to 〈{

P k+λ+i
l (v) · Ig′+k−l(G,XG)|xv=0

}k+λ−1

l=0
, P k+λ+i

k+λ (v) · Ig′−λ(G− v,XG−v),

P k+λ+i
k+λ (v) ·minorsg′−λ(a, L(G− v,XG−v)), P

k+λ+i
k+λ (v) ·minorsg′−λ(L(G− v,XG−v), S

k+λ+i
g′+k (G, v)

〉
.

If λ(d, d′) = 0, then Ig′(G − v,XG−v) is trivial and 〈P k+i
k (v) · Ig′(G − v,XG−v)〉 = 〈P k+i

k (v)〉.
Therefore,

Ig′+k(d
k+i(G, v), Xdk+i(G,v)) =

〈{
P k+i
l (v) · Ig′+k−l(G,XG)|xv=0

}k−1

l=0
, P k+i

k (v)
〉
.

Thus, assume that λ(d, d′) > 0. If d′ = 0, then Ig′(G,XG) is trivial, and therefore Ig′(G,XG)|xv=0

is also trivial. Also, if d′ > 0, then Ig′(d(G, v), Xd(G,v)) is trivial, and by Lemma 3.5 we have that
Ig′(G,XG)|xv=0 is trivial. Therefore,

Ig′+k(d
k+i+1(G, v), Xdk+i+1(G,v)) =

〈{
P k+i+1
l (v) · Ig′+k−l(G,XG)|xv=0

}k−1

l=0
, P k+i+1

k (v)
〉
.

�

When k = 1, Theorem 3.19 can be reduced to the following simpler form

Ig′+1(di+1(G, v), Xdi+1(G,v)) = 〈xv0 , xv1 , . . . , xvi+1 , Ig′+1(G,XG)|xv=0〉,
for all i ≥ λ(d, d′). Which is similar to Lemma 3.5. For a fixed integer k′ ≥ λ + 1, we have that
Theorem 3.19 implies that

Ig′+j(d
k′(G, v), Xdk′ (G,v)) =

〈
P k′

j (v),
{
P k′

l (v) · Ig′+j−l(G,XG)|xv=0

}j−1

l=0

〉
,
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for all j such that 1 ≤ j ≤ k′ − λ. That is, Theorem 3.19 does not describe all the critical ideals
of dk

′
(G, v). In order to obtain a description of all the critical ideals of dk

′
(G, v) it still remains

to compute d = γP(G) − γP(G − v), d′ = γP(d(G, v)) − γP(G), and Ig′+j(d
k(G, v), X) for any

j > k′ − λ(d, d′). Now we present an example that may help to understood Theorem 3.19.

Example 3.20. Let G be the cycle with four vertices and sign σ given by

σ(e) =

{
−1 if e = v1v4, v4v3,

1 otherwise.

See Figure 11. By using a computer algebra system, we can verify that γZ(G) = 2, γZ(G− v1) = 2,
and γZ(d(G, v1)) = 2. Thus d, d′ = 0 and λ(d, d′) = 0. Also, it can be checked that I3(G,XG) =
〈x2 + x4, x1 − x3, x3x4 + 2〉 and I4(G,XG) = 〈x1x2x3x4 + x1x2 + x2x3 − x1x4 − x3x4 − 4〉.

v1

v2 v3

v4
−
− L(G,X) =


x1 −1 0 1
−1 x2 −1 0
0 −1 x3 −1
−1 0 1 x4


Figure 11. A signed multidigraph G with four vertices and its generalized Lapla-
cian matrix.

Since I3(G,XG)|xv1=0 = 〈2, x3, x2 + x4〉, then Theorem 3.19 implies that

I3(di+1(G, v1), Xdi+1(G,v1)) =
〈
P i+1

1 (v1), I3(G,XG)|xv1=0

〉
=
〈
{xvl1}

i+1
l=0, 2, x3, x2 + x4

〉
,

for all i ≥ 0. Also, since I4(G,XG)|xv1=0 = 〈x2x3 − x3x4 − 4〉, then by Theorem 3.19

I4(di+2(G, v1), Xdi+2(G,v1)) =
〈
P i+2

2 (v1), P i+2
1 (v1) · I3(G,XG)|xv1=0, I4(G,XG)|xv1=0

〉
= 〈{xvl1xvl′1 }0≤l<l′≤i+2, {2xvl1}

i+2
l=0, {xvl1x3}i+2

l=0, {xvl1(x2+x4)}i+2
l=0,

x2x3−x3x4−4〉
for all i ≥ 0. Finally, since Ij(G,XG) = 〈0〉 for all j ≥ 5, then

Ik+2(dk+i(G, v1), Xdk+i(G,v1)) = 〈P k+i
k (v1), P k+i

k−1(v1) · I3(G,XG)|xv1=0, P
k+i
k−2(v1) · I4(G,XG)|xv1=0〉

= 〈P k+i
k (v1), {2, x3, x2+x4} · P k+i

k−1(v1), (x2x3−x3x4−4) · P k+i
k−2(v1)〉

for all i ≥ 1, k ≥ 1. Moreover, the reader can check that

I4(d(G, v), Xd(G,v)) = 〈xv01(x2 + x4), xv11(x2 + x4), xv01(x3x4 + 2), x2x3 − x3x4 − 4,

xv01xv11x4 + 2xv01 + 2xv11 , xv01x3 + xv11x3 − xv01xv11〉
6= 〈P i+1

2 (v), P i+1
1 (v) · I3(G,XG)|xv1=0, I4(G,XG)|xv1=0〉.

That is, Theorem 3.19 can not be improved.

Now we will give the description of the critical ideals of rk(G, v). This part is structured
similarly than the part of the critical ideals of dk(G, v). Given a subset S of the natural numbers

and a vertex v ∈ V (G), let P̃ S
l (v) = {

∏
c∈C xvc + 1 : C ∈

(
S
l

)
}. We take P S

0 (v) = {1}. Also, for

simplicity P̃
{0}∪[k]
l (v) will be denoted by P̃ k

l (v). We will use similar arguments to those used in the
proof of Lemma 3.16.
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Lemma 3.21. Let G be a signed multidigraph with n vertices, and v ∈ V (G). If k, j ≥ 1 and
m = min(j − 1, k), then

Ij(r
k(G, v), Xrk(G,v)) =

〈
{P̃ kl (v) · Ij−l(G,XG)|xv=−1}m−1

l=0 , P̃ km(v) · Ij−m(G−v,X),

P̃ km(v) ·minorsj−m(a, L(G−v,X)), P̃ km(v) ·minorsj−m(L(G−v,X),b), S̃kj

〉
,

where S̃kj is equal to{
j∏
s=1

(xvls +1)−
j∑
s=1

∏
t6=s

(xvlt +1) : 0 ≤ l1< · · · < lj ≤ k

}
,

when j ≤ k + 1, and equal to{
det(Q) ·

k∏
t=0

(xvt+1)+det(J(−1, a′;Q,b′))
k∑
t=0

∏
s 6=t

(xvs+1) : J(xv, a
′;Q,b′) ∈Mj−k(L(G,XG))

}
,

when j > k + 1.

Proof. Let I, I ′ ⊆ [n+k]be two sets of size j, h = |I ∩ [k+1]|, and h′ = |I ′∩ [k+1]|. Clearly
0 ≤ h, h′ ≤ m + 1. Suppose L(rk(G, v), Xrk(G,v)) = J(L(Kk+1, XKk+1

), a;L(G − v,XG−v),b) for

some a,b ∈ Pn−1. Let mI,I′ = det(L(rk(G, v), X)[I, I ′]).
We can use the same arguments used in the proof of Lemma 3.16 for the case when h = 0 or

h′ = 0. On the other hand, by Lemma 3.3

mI,I′ =



0 if |h− h′| > 2,

det
[
P 1T

]
det

[
b′

Q

]
if h− h′ = 1,

det

[
P
1

]
det
[

a′T Q
]

if h′ − h = 1,

det(P ) det(Q)− det

[
P 1T

1 0

]
det

[
0 b′

a′T Q

]
if h = h′,

where P is a submatrix of L(Kk+1, XKk+1
), Q is a submatrix of L(G− v,XG−v), a′ is a subvector

of a and b′ is a subvector of b. If h− h′ = 1 then det
[
P 1

]
6= 0 if and only if (up to row and

column permutations)

P =

 xvi1 −1 −1
. . .

−1 xvih′ −1

T

for some 0 ≤ l1 < · · · < lh′ ≤ k. Since det
[
P 1T

]
=
∏h′

s=1(xvis + 1), then mI,I′ ∈ P̃ k
h′(v) ·

minorsj−h′(L(G− v,XG−v),b) ( P̃ k
h′(v) · Ij−h′(G,XG)|xv=−1. In a similar way, if h′ − h = 1, then

mI,I′ ∈ P̃ k
h (v) · Ij−h(G,XG)|xv=−1.

Now assume that h = h′. It is not difficult to see that if P has two rows equal to −1, then
mI,I′ = 0. Let

R =

 xvl1 −1
. . .

−1 xvlh
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where 0 ≤ l1 < · · · < lh ≤ k. If P has only a row equal to −1, then P is equal to (up to row and col-

umn permutations)R|x
vlh

=−1. Since det(R|x
vlh

=−1) = −
∏h−1

s=1 (xvls+1) and det(J(R|x
vlh

=−1,1; 0,1)) =

−
∏h−1

s=1 (xvls + 1), then

mI,I′ = (det(J(0, a′;Q,b′))− det(Q))
h−1∏
s=1

(xvls + 1) = det(J(−1, a′;Q,b′))
h−1∏
s=1

(xvls + 1),

for all 1 ≤ h ≤ m. Thus mI,I′ ∈ 〈P̃ k
h−1(v) · Ij−h+1(G,XG)|xv=−1〉. Finally, if P has no row equal to

−1, then P is equal to (up to row and column permutations) to R. Since det(R) =
∏h

s=1(xvls +

1)−
∑h

s=1

∏
t6=s(xvlt + 1) (see [22, theorem 3.15]) and det(J(R,1; 0,1)) = −

∑h
s=1

∏
t6=s(xvlt + 1),

then

mI,I′ = det(Q) ·
h∏
s=1

(xvls + 1) + (det(J(0, a′;Q,b′))− det(Q)) ·
h∑
s=1

∏
t6=s

(xvlt + 1)

= det(Q) ·
h∏
s=1

(xvls + 1) + det(J(−1, a′;Q,b′)) ·
h∑
s=1

∏
t6=s

(xvlt + 1), for all 1 ≤ h ≤ m.

Since det(Q) ·
∏h

s=1(xvls + 1) = mI,I′ − det(J(−1, a′;Q,b′)) ·
∑h

s=1

(∏
t6=s(xvlt + 1)

)
∈ P̃ k

h (v) ·
Ij−h(G,XG)|xv=−1 we get the result. �

Now we present a result similar to Theorem 3.19 for the replication of vertices.

Theorem 3.22. Let G be a signed multidigraph, v ∈ V (G), g = γP(G), g′ = γP(r(G, v)),
d = g − γP(G− v), d′ = g′ − g, and λ = λ(d, d′). If g ≥ 1, then 0 ≤ d+ d′ ≤ 2 and

Ig′+k(r
k+λ+i(G, v), Xrk+λ+i(G,v)) =

〈
P̃ k+λ+i
k (v),

{
P̃ k+λ+i
l (v) · Ig′+k−l(G,X)|xv=−1

}k−1

l=0

〉
,

for all k ≥ 1 and i ≥ 0.

The proof follows similar arguments of those used in Theorem 3.19.

Proof. First since Ij(G,XG)|xv=−1 ⊆ Ij−2(G − v,XG−v), then Lemma 3.6 that that 0 ≤
d+ d′ ≤ 2. Now since m = min(g′ + k − 1, k + λ+ i) = k + λ, then by Lemma 3.21 we have that
Ig′+k(r

k+λ+i(G, v), Xrk+λ+i(G,v)) is equal to〈{
P̃ k+λ+i
l (v) · Ig′+k−l(G,XG)|xv=−1

}k+λ−1

l=0
, P̃ k+λ+i

k+λ (v) · Ig′−λ(G− v,XG−v),

P̃ k+λ+i
k+λ (v) ·minorsg′−λ(a, L(G− v,XG−v)), P̃

k+λ+i
k+λ (v) ·minorsg′−λ(L(G− v,XG−v),b), S̃k+λ+i

g′+k (G, v)
〉
.

If λ(d, d′) = 0, then we use the same argument given in Theorem 3.19. Now if λ(d, d′) = 1,
then either Ig′(G,XG) is trivial or Ig′(r(G, v), Xr(G,v)) is trivial. In both cases we have that
Ig′(G,XG)|xv=−1, and the result turns out in a similar way than in Theorem 3.19. �

Now we how an example in order to understand Theorem 3.22.

Example 3.23. Let G be the signed multidigraph given in Figure 12.
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v1

v2

v3

v4

v5

v6

− L(G,X) =


x1 0 0 0 0 0
−1 x2 1 0 0 0
−1 1 x3 0 0 0
−1 0 0 x4 −1 −1
−1 0 0 −1 x5 −1
−1 0 0 −1 −1 x6



Figure 12. A graph G with six vertices and its generalized Laplacian matrix.

By using a computer algebra system, we can check that γZ(G) = γZ(G−v1) = 2 and γZ(r(G, v1)) =
3. Thus d′ = 1 and λ(d, d′) = 1. Also, it is not difficult to check that I4(G,XG)|x1=−1 =
〈x4 + 1, x5 + 1, x6 + 1, x2x3 − 1〉,
I5(G,XG)|x1=−1 = 〈(x4+1)·(x2x3−1), (x5+1)·(x2x3−1), (x6+1)·(x2x3−1), x4x5x6−x4−x5−x6−2〉,
and I6(G,XG)|x1=−1 = 〈(x2x3 − 1) · (x4x5x6 − x4 − x5 − x6 − 2)〉. Then Theorem 3.22 implies

I4(ri+2(G, v1), Xri+2(G,v1)) = 〈{xvl1 + 1}0≤l≤i+2, I4(G,XG)|x1=−1〉
= 〈{xvl1 + 1}0≤l≤i+2, x4 + 1, x5 + 1, x6 + 1, x2x3 − 1〉,

for all i ≥ 0. Also I5(ri+3(G, v1), Xri+3(G,v1)) is equal to〈{
(xvl1 + 1)(xvl′1

+ 1)
}

0≤l<l′≤i+3
, I5(G,XG)|x1=−1,

{
(xvl1 + 1) · I4(G,XG)|x1=−1

}
0≤l≤i+3

〉
for all i ≥ 0. Finally, Ik+3(rk+i+1(G, v1), Xrk+i+1(G,v1)) is equal to〈

P̃ k+i+1
k (v1), P̃ k+i+1

k−1 (v1) · I4(G,X)|xv=−1, P̃
k+i+1
k−2 (v1) · I5(G,X)|xv=−1, P̃

k+i+1
k−3 (v1) · I6(G,X)|xv=−1

〉
,

for all k ≥ 3 and i ≥ 0. On the other hand, it is not difficult to check that I4(r(G, v1), Xr(G,v1)) is
equal to

〈{(xvl1 + 1)(xl′ − 1)}0≤l≤1,2≤l′≤3, x4 + 1, x5 + 1, x6 + 1, x2x3 − 1, xv01xv11 − 1〉,
which is different from 〈xv01 + 1, xv11 + 1, x4 + 1, x5 + 1, x6 + 1, x2x3 − 1〉. Thus Theorem 3.22 can
not be improved.

Remark 3.24. Note that Ii(Kk+1, XKk+1
) = 〈P̃ k

i (v)〉. Moreover, if m = min(k, j − 1), then

Ij(r
k(g, v), Xrk(g,v))|xv0=−1 =

〈{
P̃

[k]
l (v) · Ij−l(G,XG)|xv=−1

}m
l=0

〉
.

That is, Ij(d
k(G, v), X)|xv0=−1 behaves almost equally as Ij(Kk+1 +G,XKk+1+G).



CHAPTER 4

Critical ideals of small graphs

The computation of the invariant factors of the Laplacian matrix is an important technique
used in the understanding of K(G). For instance, several researchers addressed the question of
how often the critical group is cyclic, that is, if f1(G) denote the number of invariant factors equal
to 1, then the question is how often f1(G) is equal to n− 2 or n− 1. In this way, it is desirable to
understand the combinatorial properties of f1(G) and the family of graphs Gi of simple connected
graphs with f1(G) = i.

Superficially, the critical group has three components: algebraic, combinatorial, and arithmetic.
The methodology of these studies rely on the separation of the combinatorial and algebraic infor-
mation from most of the arithmetic component by means of the introduction of a new invariant:
the critical ideals. Critical ideals were defined in [22] as a generalization of the critical group and
have been studied in [1, 7, 22]. The effect of avoiding the arithmetic information is that the
behavior of the critical ideals is easier to observe and to describe. Thus critical ideals provide a
new perspective to understand the critical group theory.

The difficulty in critical ideals relies in that these are parameters hard to compute. However, it
is possible to compute the algebraic co-rank of all simple connected graphs with at most 9 vertices
using the software Macaulay2 and Nauty, see Table 1. The computation of the algebraic co-rank
of the connected graphs with at most 8 vertices required at most 3 hours on a MacBookPro with a
2.8 GHz Intel i7 quad core processor and 16 GB RAM. Besides, the computation of the algebraic
co-rank of the connected graphs with 9 vertices required 4 weeks of computation on the same
computer. Under these conditions the time required to compute the critical ideals of the graphs
with 10 vertices is at least 3.7 years.

n\γ 1 2 3 4 5 6 7 8

2 1

3 1 1
4 1 4 1
5 1 8 11 1

6 1 13 52 45 1

7 1 18 141 505 187 1
8 1 24 315 2749 7086 941 1

9 1 31 605 10085 93296 152365 4696 1

n\f1 1 2 3 4 5 6 7 8

2 1

3 1 1
4 1 3 2
5 1 6 11 3

6 1 8 34 63 6

7 1 8 53 271 509 11
8 1 11 97 707 3226 7052 23

9 1 15 139 1646 12822 68979 177431 47

(a) The number of simple connected graphs with n vertices (b) The number of simple connected graphs with n vertices
and γ trivial critical ideals. and f1 invariant factors equal to 1.

Table 1.

This section aims at discussing some numerical experiments using this data, which had led to
numerous conjectures and results.
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1. Numerical experiments

It follows from Kirchoff’s matrix-tree theorem that the order of K(G) is the number κ(G) of
spanning trees of the graph G. This is the reason the only graphs with n vertices and n − 1
invariant factors are the trees. In the case of critical ideals, we can observe in the data that the
only graph with n vertices and n− 1 trivial critical ideals is the path ([22, Conjecture 4.12]). But
this was completely proved until [23]. Contrary to the critical group, the data suggests (see Fig.
15.a) that the number of graphs with n vertices and n− 2 trivial critical ideals is small, and there
might be chances of completely classifying these graphs.

A major investigation on the behavior of the critical group is: how often the critical group is
cyclic? In [35] and [44] was found that the numerical data suggests we could expect to find a
substantial proportion of graphs have cyclic critical group. This behavior can be also observed in
Fig. 15.b. Based on this, D. G. Wagner conjectured that almost every connected simple graph has
cyclic critical group. However, a deeper study was done in [45] concluding that the probability
that the critical group of a random graph is cyclic is asymptotically at most

ζ(3)−1ζ(5)−1ζ(7)−1ζ(9)−1ζ(11)−1 · · · ≈ 0.7935212,

where ζ is the Riemann zeta function, differing from Wagner’s conjecture. Besides, it is interesting
[19] that for any given connected simple graph, there is a homeomorphic graph with cyclic critical
group. See [20, 35, 45] for more questions and results on this topic.
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(a) Scaled number of connected graphs with n vertices (b) Scaled number of connected graphs with n vertices
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Figure 13.

1.1. γ-critical graphs. One of the first results in the study of the critical group was [21,
34, 38] that G1 consists only of the complete graphs. In this sense, several people [37] posed
interest on the characterization of G2 and G3. These characterizations are quite hard. In [40] it
was characterized the graphs in G2 whose third invariant factor is equal to n, n − 1, n − 2, or
n − 3. In [17] the characterizations of the graphs in G2 with a cut vertex. Recently, a complete
characterization of G2 was given in [2], and a partial description of G3 was given in [3]. There are
also related results of interest to algebraic geometers. In [17, 34] some graph families for which
the equality f1(G) = β(G) holds are characterized.

The major advances in this matter were provided by the properties critical ideals; since the set
Γ≤i is closed under induced subgraphs. This property allow us to define the following concepts.
A graph G is forbidden for Γ≤k when γ(G) ≥ k + 1. Let Forb(Γ≤k) be the set of minimal (under
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induced subgraphs property) forbidden graphs for Γ≤k. Given a family F of graphs, a graph G is
called F -free if no induced subgraph of G is isomorphic to a member of F . Thus G ∈ Γ≤k if and
only if G is Forb(Γ≤k)-free. Hence characterizing Forb(Γ≤k) leads to a characterization of Γ≤k.
And after an analysis of the k-th invariant factor of the Laplacian matrix of the graphs in Γ≤k, the
characterization of Gk can be obtained. For example, in [2] it was proved that Forb(Γ≤0) = {P2},
Forb(Γ≤1) = {P3}, and Forb(Γ≤2) = {P4, K5\S2, K6\M2, cricket, dart}. And the characterization
of Γ≤2 and G2 turns out.

An alternative technique of computing the elements of Forb(Γ≤k) is by means of the following
definition. A graph G is called γ-critical if γ(G − v) < γ(G) for all v ∈ V (G). Then Forb(Γ≤k)
is equal to the set of γ-critical graphs with γ(G) ≥ k + 1 and γ(G − v) ≤ k for all v ∈ V (G). In
Table 2 it is shown the number γ-critical graphs with until 9 vertices.

k\n 2 3 4 5 6 7 8 9

0 1

1 1

2 1 3 1
3 1 27 17 4

4 1 153 773 340

5 1 871 52333
6 1 4562

7 1

Table 2. The number of simple graphs with n vertices in Forb(Γ≤k).

We have that Pk is the unique graph with k vertices in Forb(Γ≤k−2). Therefore, Forb(Γ≤k)
is not empty for all k ≥ 0. However, it is still an open question to prove that Forb(Γ≤k) is finite
for all k ≥ 3. For instance, there are 49 graphs in Forb(Γ≤3) with at most 8 vertices. And since
there exists no minimal forbidden graph with 9 vertices for Γ≤3, then it is likely that there exists
no graph in Forb(Γ≤3) with more than 8 vertices. A question to ask is: Is there an asymptotic
behavior on the proportion of γ-critical graphs with n vertices? Is it expected to remain low?

n 2 3 4 5 6 7 8 9

% γ-critical 100 20 16.66 19.04 25.89 20.04 14.83 21.92

Table 3. Percentage of graphs with n vertices which are γ-critical.

1.2. Components of the critical group. The standard technique for obtaining the invari-
ant factors of the critical group is to reduce the Laplacian matrix to its Smith normal form.
Algorithmically, this is done by applying row and column operations to obtain a diagonal matrix,
whose entries are the invariant factors. However the process of computing f1(G) hides several
relations with the combinatorial structure of the graph. We identify three components for which
∆k(G) = 1.

• Algebraic. When Ik(G,XG) = 〈1〉 and there is no induced subgraph of order k whose
associated minor equals 1.
• Combinatorial. When there exists an induced subgraph of order k whose corresponding

minor is equal to 1.
• Arithmetic. Otherwise.

Table 4 shows the number of occurrences for each type of component.
Next example shows the only graph with 7 vertices in which the algebraic component appears.
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algebraic combinatorial arithmetic

2 0 1 0

3 0 3 0

4 0 12 1
5 0 54 4

6 0 368 33

7 1 3420 450
8 28 53045 8672

9 10367 1445401 271641

Table 4.

Example 4.1. Let G be the graph in Fig. 14. It is not difficult to check that the algebraic
co-rank of G is 5 and L(G,X) has no 5-minor equal to 1.

G

Figure 14. A graph G with seven vertices.

1.3. Characteristic ideals. In [35] D. Lorenzini showed a deep relation between the critical
group and the Laplacian spectrum of a graph. For instance, Lorenzini ([35, proposition 3.2])
proved that if λ is an integer eigenvalue of L(G) of multiplicity µ(λ), then K(G) contains a

subgroup isomorphic to Zµ(λ)−1
λ . Another point of interest on the critical group discussed in [14]

and [8, Section 13.8] is that its structure can be used to distinguish graphs in cases where other
algebraic invariants, such as those derived from the spectrum, fail. In this sense critical ideals are
even finer as next result shows. Let σ be a permutation on V (G). Then σG is a graph on V (G) such
that {i, j} ∈ E(G) if and only if {σ(i), σ(j)} ∈ σG. Two graphs G and G′ on the same vertex set V
are called n-cospectral if there exists a permutation σ on V such that In(G,XG) = In(σG′, XσG′).

Proposition 4.2. [27, Propisition 1] Let G and G′ be two graphs with n vertices. Then G and
G′ are isomorphic if and only if they are n-cospectral.

Let Ii(G, t) denote the critical ideals where xi = t for all 1 ≤ i ≤ n. Then In(G, t) is equal
to the ideal generated by the characteristic polynomial pG(t) of the adjacency matrix of G. In a
similar way, if we take xi = dG(i)−t for all 1 ≤ i ≤ n, then we recover the characteristic polynomial
of the Laplacian matrix of G from their critical ideals. Therefore, the ideals Ii(G, t) ⊆ R[t] are
called characteristic ideals, in keeping with the terminology used in spectral graph theory.

Note that characteristic ideals depend on the base ring. We say that two graphs G and G′ are
γR-cospectral if they have the same characteristic ideals on R[t]. The term “set of γR-cospectral
non-ismorphic graphs” is denoted by γR-SET.

Example 4.3. Let G1 and G2 be the graphs shown in Fig. 15. These graphs are cospectral,
moreover they are the unique pair of γQ-cospectral graphs with 6 vertices.

Ii(G1, t) = Ii(G2, t) =


〈1〉 if 1 ≤ i ≤ 4,

〈t+ 1〉 if i = 5,

〈(t− 1) · (t+ 1)2 · (t3 − t2 − 5t+ 1)〉 if i = 6,
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G1 G2

Figure 15.

But when the base ring is Z, we have that the characteristic ideals are:

Ii(G1, t) =


〈1〉 if 1 ≤ i ≤ 4,

〈2(t+ 1), (t+ 1) · (t2 + 1)〉 if i = 5,

〈(t− 1) · (t+ 1)2 · (t3 − t2 − 5t+ 1)〉 if i = 6,

and

Ii(G2, t) =


〈1〉 if 1 ≤ i ≤ 3,

〈2, (t+ 1)〉 if i = 4,

〈4(t+ 1), (t+ 1) · (t− 3)〉 if i = 5,

〈(t− 1) · (t+ 1)2 · (t3 − t2 − 5t+ 1)〉 if i = 6.

In Table 5 it is shown the number of γR-SETs with n vertices.

6 7 8

Q 1 31 660

Z 0 3 232

Table 5. The number of γ-SETs with n vertices.
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Dimension Reduction in Tree Space





CHAPTER 5

Dimension Reduction in Tree Space

1. Introduction

In statistics, data sets that reside in high dimensional spaces are quite common. A widely
used set of techniques to simplify and analyze such sets is principal component analysis (PCA).
It was introduced by Pearson in 1901 and independently by Hotelling in 1933. A comprehensive
introduction can be found in [18].

The main aim of PCA is to provide a smaller subspace such that the maximum amount of
information is retained when the original data points are projected onto it. This smaller subspace
is expressed through components. In many contexts, one dimensional subspaces are called lines,
and we follow this terminology. The line that carries the most variation present in the data set is
called first principal component (PC1). The second principal component (PC2) is the line such that
when combined with PC1, the most variation that can be retained in a two-dimensional subspace
is kept. One may repeat this procedure to find as many principal components as necessary to
properly summarize the data set in a manageable sized subspace.

Another way to characterize the principal components is to consider the distances of the data
points to a given subspace. The line which minimizes the sum of squared distances of data points
onto it can be considered as PC1. Similarly, PC2 is the line that, when combined with PC1, the
sum of squared distances of the data points to this combination is minimized. In Euclidean space,
these two characterizations are equivalent.

An important topic within PCA is called dimension reduction (See [20] for dimension reduction
and [18] pp. 144, for backward elimination method). The aim of dimension reduction method is
to find the components such that when they are eliminated, the projection of the data onto the
remaining subspace will retain the maximum amount of variation. Or alternatively, the remaining
subspace will have the minimum sum of squared distances to the data points. These are the
components with least influence.

We would like to note that, in the general sense, any PCA method can be regarded as a
dimension reduction process. However, [20] reserves the term dimension reduction specifically for
this method, which some other resources also refer as backward elimination, or backward PCA. We
will follow [20]’s convention, together with “backward PCA” terminology. The original approach
will be called forward PCA.

In Euclidean space, the choice of which technique to use depends on the needs of the end user:
If only the few principal components with most variation in them are needed, then the forward
approach is more suitable. If the aim is to eliminate only the few least useful components, then
the backward approach would be the appropriate choice.

The historically most common space used in statistics is the Euclidean space (Rn) and the PCA
ideas were first developed in this context. In Rn, the two definitions of PC’s (maximum variation
and minimum distance) are equivalent, and the components are all orthogonal to each other. In

89



90 5. DIMENSION REDUCTION IN TREE SPACE

Euclidean space, applying forward or backward PCA n times for a data set in Rn would provide
an orthogonal basis for the whole space.

Moreover, in this context, the set of components obtained with the backward approach is the
same as the one obtained by the classical forward approach, only the order of the components is
reversed. This is a direct result of orthogonality properties in Euclidean space. This phenomenon
can be referred as path independence and it is very rare in non-Euclidean spaces. In fact, to the best
of the authors’ knowledge, this thesis is presenting the first known example of path independence
in non-Euclidean spaces.

With the advancement of technology, more and more data sets that do not fit into the Euclidean
framework became available to researchers. A major source of these is biological sciences; collecting
detailed images of their objects of interest using advanced imaging technologies. The need to
statistically analyze such non-traditional data sets gave rise to many innovations in statistics. The
type of non-traditional setting we will be focusing in is sets of trees as data. Such sets arise in
many contexts, such as blood vessel trees ([6]), lung airways trees ([27]), and phylogenetic trees
([9]).

A first starting point in PCA analysis for trees is [28], who attacked the problem of analyzing
the brain artery structures obtained through a set of Magnetic Resonance Angiography (MRA)
images. They modeled the brain artery system of each subject as a binary tree and developed
an analog of the forward PCA in the binary tree space. They provided appropriate definitions of
concepts such as distance, projection and line in binary tree space. They gave formulations of first,
second, etc. principal components for binary tree data sets based on these definitions. This work
has been the first study in adapting classical PCA ideas from Euclidean space to the new binary
tree space. [28]’s definitions involve a vector of attributes for each node.

The PCA formulations of [28] gave rise to interesting combinatorial optimization problems.
[4] provided an algorithm to find the optimal principal components in binary tree space in linear
time. This work however used the simplified versions of [28]’s definitions where attributes are not
considered. Only topology information is included in the analysis. This development enabled a
numerical analysis on a full-size data set of brain arteries, revealing a correlation between their
structure and age.

In the context of PCA in non-Euclidean spaces, [19] gave a backward PCA interpretation in
image analysis. They focus on mildly non-Euclidean, or manifold data, and propose the use of
Principal Nested Spheres as a backward step-wise approach.

[21] provided a concise overview of backward and forward PCA ideas and their applications in
various non-classical contexts. They also mention the possibility of backwards PCA for trees: “...
The notion of backwards PCA can also generate new approaches to tree line PCA. In particular,
following the backwards PCA principal in full suggests first optimizing over a number of lines
together, and then iteratively reducing the number of lines.” This quote essentially summarizes
one of our goals in this part of the thesis.

In this work, our first goal is to define and discuss the subject of rooted ordered tree spaces.
We will elaborate on the correspondence concept, which is at the heart of any numerical analysis
for ordered tree data. We will also suggest some indexing methods, and provide the generalized
versions of some basic definitions such as distance, projection, etc.

Secondly, we will extend the definitions and results of [28] and [4] on forward PCA from binary
tree space to the more general rooted ordered tree space and proceed with providing optimal
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algorithms for finding forward PC’s. We will provide rigorous definitions and proofs of all the
generalizations. Like [4], we will not consider the attribute vectors of [28] at this time.

Next, we attack the problem of finding an analog of dimension reduction. We first provide the
definition for principal components with least influence (we call these backward principal compo-
nents) in tree space, and define the optimization problem to be solved to reach them. We then
provide a linear time algorithm to solve this problem to optimality.

Furthermore, we prove that the set of backward principal components in tree space is the
same as the forward set, with order reversed, just like their counterparts in the classical Euclidean
space. This equivalence is significant since the same phenomenon in Euclidean space is a result of
orthogonality, and the concept of orthogonality does not carry over to the tree space. This result
enables the analyst to switch between the two approaches as necessary while the results remain
comparable, i.e., the components and their influence do not depend on which approach is used to
find them. Therefore path independence property is valid in tree space PCA as well.

Our numerical results come from two main data sets. First one is an updated version of the
brain artery data set previously used by [4]. Using our backward PCA tool, we investigate the
effect of aging in brain artery structure in male and female subjects. We define two different kinds
of age effect on the artery structure: overall branchyness and location-specific effects. We report
our findings on both of these effects for male and female subpopulations. Secondly, we present a
statistical analysis of the organization structure of a large US company. We present evidence on
the structural differences across departments focusing on finance, marketing, sales and research
and development (R&D).

2. The Tree Space

An ordered tree is a tree where a left-to-right order among siblings in the tree is given. For
example, a leftmost child of a node is distinct from, say, the rightmost child of the same node. In
this work we focus on ordered trees. This order is determined using correspondence ideas together
with an indexing scheme to distinguish the node siblings. Moreover, we are focusing on rooted
trees. A rooted ordered tree is a tree such that there is a single node designated as a root, and each
node is indexed in such a way that a correspondence structure can be established between data
trees. For the rest of the thesis, we will refer to the rooted ordered tree space as the tree space,
and the term tree is reserved for rooted tree graphs in which each node is distinguished from each
other through indexes. A data set, T , is an indexed finite set of n trees. Note that we are only
focused on the topology of data trees, and any attribute vectors that the nodes might carry will
not be part of our analysis.

In computer science, a well-studied subject is the space of labeled trees. A labeled tree is a tree
such that each node is assigned a symbol from a finite alphabet Σ (See [8]). In this space, a set of
labeled nodes can form different trees if they are connected in different configurations. Here, our
focus is not on labeled trees but indexed ordered trees. The index of a node is only determined by
the node’s location in a tree.

2.1. Correspondence. The concept of correspondence is a crucial element in analyzing sets
of tree shaped objects. As a result, there is a growing research interest on the issue. In binary tree
context, correspondence refers to which child of each node will be assumed left or right, effectively
deciding which nodes across the data trees will be considered the same. For example, in Figure
17, the nodes indexed as 2 in both trees are assumed to be the same.
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A consequence of using ordered trees is that, if two nodes correspond to each other, then their
parents correspond as well. We will build the indexing schemes we propose based on this limitation.

For some tree data sets, the nature of the data uniquely determines the correspondence. In
other examples, ambiguities may need to be resolved when there is no obvious correspondence
choice available. An example of this is the brain artery data set we use in this thesis. With this
data set, there is no clear way to decide which artery trunks correspond to each other beyond the
root nodes.

[4] proposed two schemes: descendant correspondence, where the child with the more number of
descendants is assumed to be the left node, and thickness correspondence, where the child with the
larger median thickness measurement is put on left. It was later understood that the descendant
correspondence approximates which blood artery trunks are “main” and which are “side” branches
better than the thickness correspondence. This is mostly due to the fact that the MRA imaging
technique used to obtain this data is not able to measure the thickness of the arteries to a desired
accuracy level.

Another option considered, but not pursued, is to decide correspondence based on the location
of the arteries in the brain. The apparently arbitrary growth of the arteries covering the surface
of the brain render achieving a meaningful correspondence through physical location difficult.

The correspondence decision affects the statistical results obtained from any data set. As an
example, [4] found a connection between the branching structure of the brain with aging under
descendant correspondence, but the effect was not there when thickness correspondence was used.
A scheme that represents the structures within the data set incorrectly can obscure the statistical
connections related to these structures.

2.2. An Indexing Scheme. The correspondence within a data set is expressed through in-
dices. Indices are “names” given to each node in a tree, so that the nodes with the same indices
across data trees correspond to each other.

For binary trees, [28] proposed a level-order indexing method. In this scheme the root node
has index 1. For the remaining nodes, if a node has index i, then the index of its left child is 2i
and of its right child is 2i+ 1.

In this thesis, we will propose a somewhat similar technique, called k-way tree indexing . A
k-way tree is a rooted tree in which each node has no more than k children (See [12]). We call the
root node 0, and the jth child of the node i is called k ∗ i+ j. This scheme reserves a unique index
for all the nodes that exist in a full k-way tree, even if they do not exist in a particular instance.
Furthermore, when k is known, it is easy to deduct the location of a given node from this index.

An example tree indexed using k-way tree indexing is given in Figure 16.

0

1 2

5 6 9 10 11 12

Figure 16. An example 4-way tree, indexed using the k-way tree indexing method.

A concept that will be useful in the following sections is the support tree (Supp(T )). The
support tree of a data set is the smallest tree that includes all the members of the data set as
sub-trees. Similarly, the intersection tree (Int(T )) of a data set is the largest sub-tree that is
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common to all of the data trees. They can be expressed as:

Supp(T ) = ∪ni=1ti and Int(T ) = ∩ni=1ti,

where T = {t1, . . . , tn} is a data set.
When indexing a data set of trees, the support tree should be used to determine the constant k

and the indices. Constructing the support tree requires deciding a proper correspondence scheme
before the indexing. This scheme will determine the order of the children of each node in every
tree, and which ones correspond to which nodes in other trees.

2.3. Core Concepts. Some important concepts in the tree space include distance, median,
line, and projection. These were defined previously for binary tree spaces ([28]). In this work we
re-define these for rooted ordered tree space.

A distance metric between two trees is the symmetric difference of their nodes. Given two
trees, t1 and t2, the distance between t1 and t2, denoted by d(t1, t2), is

|t1 \ t2|+ |t2 \ t1|,
where | · | is the number of nodes and \ is the node set difference. In Figure 17, the nodes 0, 1 and
2 are common to both of the trees, so they do not contribute to the distance between them. The
nodes 3, 4, 5 and 6 exist in one data tree but not in the other, therefore, the distance between the
left and right trees in the figure is |{3, 4, 5, 6}| = 4.

0

1

3 4

2

0

1 2

65

Figure 17. Two trees of which nodes are indexed using k-way tree indexing. The
nodes 3, 4, 5 and 6 contribute to the distance.

It can easily be shown that d is a non-negative real function which has the following properties:

(1) d(t1, t2) = 0 if and only if t1 = t2,
(2) d(t1, t2) = d(t2, t1), and
(3) d(t1, t3) ≤ d(t1, t2) + d(t2, t3),

where t1, t2 and t3 are trees. Hence d is a metric.
Equipped with this distance metric, we can now define the norm or length of any data tree as

its distance to the zero (empty tree):

|t| = d(t, {}).
A distance metric frequently used for labeled and unlabeled trees is the tree edit distance. Given

a cost function and two trees, their tree edit distance is the minimal cost of a sequence of edit
operations (inserting, deleting or relabeling nodes) to turn one of these trees into the other. (See
[8], and [16]). In our case, we use ordered trees, and the distinction of any node from another comes
from topology-based indices rather than labels. The tree edit distance for the ordered tree space
only uses the insertion and deletion operations. When the cost of deletion and insertion are the
same, the tree edit distance in the ordered tree space becomes equivalent to our distance definition
given above. Another equivalent metric is Robinson-Foulds distance (see [26]). It is defined as the
minimum number of contractions and decontractions of the edges required to transform one tree
into another.
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In our current setting, only the topological structure of the trees is considered as data. Any
attributes of the nodes beyond their location and correspondence information is not part of the
input. For this reason the distance metric given above is the best option to determine how close
or far the data trees are in tree space.

In another setting where data trees or nodes carry numerical attributes, these may be incor-
porated into the distance measurement (see Wang and Marron (2007) for an example).

A very rich literature exists for distance metrics developed in the phylogenetic tree space. The
geodesic distance was introduced in [9], and a polynomial time algorithm for computing geodesics
in this space was found in [24]. To build the geodesic distance each tree is represented by its
edge lengths as well as its topology. The distance is designed for understanding trees for which
the differences between their edge lengths are very important. The emphasis on edge length is
incompatible with the data sets we use in this study.

There are other distance measures that emphasize only the differences in topologies between
the trees and not accounting any other attributes. For instance, the nearest neighbor interchange
(NNI) distance was defined in [25] as the minimum number of crossovers converting a tree into
another. The subtree-prune-and-regraft (SPR) distance was analyzed in [15], and the tree bisection
and reconnection (TBR) distance was studied in [3]. In each of these cases these distances are
defined as the minimum number of SPR or TBR operations to transform a tree to another. These
distances assume that all the interior vertices of trees have degree 3.

A big limitation of distances developed for phylogenetic trees is that all trees have a fixed
number of leaves. The data trees share the same leaf node set (corresponding to living or extinct
species). This is a very big assumption that does not apply to our data.

In another context the classical tree edit distance (a variant of the tree edit distance) and
quotient Euclidean distance are studied in [13]. These use the notion of “tree-shape” which is a
tree embedded in R2 or R3, where the attributes describe the edges’ location, size, etc. in space.
These are not appropriate for a topology-only approach.

Once a notion of distance is constructed, the next step is to consider the sample mean, the
centerpoint of a given set of data points. The fully discrete nature of the tree space means thinking
in terms of sample median rather than the sample mean may be more appropriate for this space.
[28] give a definition of the median tree of a tree data set. When the attribute vectors of each node
is stripped, their median tree definition becomes such that the median of a tree set consisting of n
trees is the tree consisting of the nodes that appear at least n/2 times in the data set.

The line concept in tree space is a close counterpart to the lines in Euclidean space. In the
most general sense line refers to a set of points that are next to each other. These points lie in
a given direction, which makes the line “one-dimensional”. Due to the discrete nature of tree
space, the points (trees) that are next to each other are defined as the points with distance 1, the
smallest possible distance between two non-identical trees. To mimic the one-dimensional direction
property, we require that every next point on the line in tree space is obtained by adding a child
of most recently added node. The resulting construct is a set of trees that start from a starting
tree and expand following a path away from the root, which is akin to the sense of direction in
Euclidean space. A formal definition of a line in tree space is as follows:

Definition 5.1. Given a data set T , a tree-line, L = {l0, . . . , lk}, is a sequence of trees where
l0 is called the starting tree, and li is defined from li−1 by the addition of a single node vi ∈ Supp(T ).
In addition, each vi is a child of vi−1.

See Example 5.2 for an example tree-line.
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As noted by [28], it is important that the starting tree l0 should be defined minimally. This
will allow the principal components of the next section to have greater flexibility to explain the
variation in the data set.

The next concept to construct is projection in this space. In general, the projection of a point
onto an object can be defined as the closest point on the object to the projected point. This can
be formalized in tree space as PL(t) = arg minl∈L{d(t, l)}, where PL(t) is the projection of tree t
onto the object L. The projection can be regarded as the point in the object most similar to the
data tree. Example 5.2 contains a small data set and a tree-line, and illustrates how the projection
of each data point onto the given tree-line can be found.

Example 5.2. Let us consider the following data set T consisting of 3 data points:

t1 =

0

1

4 5

2

8 , t2 =

0

1

5

2

7

3

, and

t3 =

0

2

7 8

3

10 11 .

Thus the support tree Supp(T ) is

0

1

4 5

2

7 8

3

10 11 .

Also considrer the following tree-line

L =


l0 =

0

1

4 , l1 =

0

1

4

2

, l2 =

0

1

4

2

8

 .

The following table gives the distance between each tree of T and each tree of L:

l0 l1 l2
t1 3 2 1
t2 5 4 5
t3 8 7 6

So, we can observe that PL(t1) = l2, PL(t2) = l1 and PL(t3) = l2.

The tree-lines approximate one dimensional directions in the tree space. The combination of
multiple directions (in other words, “subspaces” of more than one dimension) in tree space can
be represented by a union of tree-lines. Remember that, in Euclidean space, a point lying on the
union of two lines is the combination of one point from the first line, and another point from the
second line. These two points do not need to be unique. The two dimensional subspace determined
by these two directions is the set of all possible combinations of the points on the two directions.

In tree space, the same concept is employed. We say that given tree-lines L1 = {l1,0, l1,1, . . . , l1,m},
L2 = {l2,0, l2,1, . . . , l2,n}, their union is the set of all possible unions of members of L1 and L2:

L1 ∪ L2 = {l1,i ∪ l2,j | i ∈ {0, · · · ,m}, j ∈ {0, · · · , n}}.
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Note that in an Euclidean setting, every point on either line is a member of the union of both
lines. In the case of tree-lines however, this is only true if both lines start at the same starting
point.

In light of this, the projection of a tree t onto L1 ∪ L2 is the point in set L1 ∪ L2 with the
smallest distance to t:

PL1∪L2(t) = arg min
l∈L1∪L2

{d(t, l)}.

Note that even though the union is explained using only two directions for simplicity, the
definition can easily be extended to the combination of any number of directions. Also note that
the length of a projection is the norm of the projection.

Now we define the concept of “path” that will be useful later on. Given a tree-line L =
{l0, · · · , lk}, the path of L, pL, is the unique path from the root to vk, the last node added in L.
Note that our path definition is different than the one given in [4], which included only the nodes
added to the starting tree l0 instead of forming a set starting from the root node.

The following lemma provides an easy-to-use formula for the projection of a data point. The
proof of it can be found in the Appendix.

Lemma 5.3. Let t be a tree and L = {l0, · · · , lk} be a tree-line. Then

PL(t) = l0 ∪ (t ∩ pL).

Proof. Since li = li−1 ∪ vi, we have that

d(t, li) =

{
d(t, li−1)− 1 if vi ∈ t,
d(t, li−1) + 1 otherwise.

In other words, the distance of the tree to the line decreases as we keep adding nodes of pL that
are in t, and when we step out of t, the distance begins to increase. �

It follows that projection of a tree onto a tree-line is unique.
In theory, a line extends to infinity. In this thesis, we limit our scope to the line pieces that

reside within the support tree of a given data set since extending these lines outside the support
tree’s scope would introduce unnecessary trivialities. We also consider only the tree-lines that are
not trivial: The tree-lines that consist of l0 and at least one more point. Finally, we only consider
tree-lines that are maximal, i.e., whose paths cannot be extended within Supp(T ). It can be seen
that in searching for PC tree-lines, non-maximal tree-lines are dominated by maximal tree-lines
that contain them.

In the light of this, we let L denote the set of all nontrivial maximal tree-lines with staring
point l0, contained in Supp(T ). Also we name P to be the set of all paths in Supp(T ) from the
root to leaves that are not in l0. It is easy to see that P is the set of paths of tree-lines in L. Also

note that |L| = |P| = n and Supp(T ) = l0 ∪
⋃
pL∈P

pL.

3. Forward PCA in Tree Space

The concepts of first, second, etc. principal components were developed previously for binary
tree space (See [28] for first principal component definition, and [4] for the other components.) In
this section, we will present principal components for the general tree space. The proofs of this
section’s results are in the Appendix.
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We also note that this section is devoted to the “forward PCA” approach where directions that
carry the most amount of variation are sought. We will develop the “backward PCA” approach in
the upcoming section.

Principal components in Euclidean space are directions where the projection of data onto it
has the largest variation. They can also be defined as directions where the distance of data to it
is minimum. In Euclidean space, these two formulations are equivalent, and (first few) principal
components are seen as the basis of the subspace with the best coverage of data while keeping
the dimensions low. In other words, they form the most representative subspace.

In tree space, however, the two formulations are not equivalent. Following [28] and [4], we
chose to employ the minimum distance formulation. The principal components obtained using
this formulation provides the best coverage of the data, even though they do not necessarily
comply with the variation definition of [28], developed using the median tree notion.

The first principal component was defined as the tree-line that minimizes the sum of distances
of the data points to their projections on the line. This can be viewed as the one-dimensional line
that best fits the data. We will provide a similar definition below, adopted to the general tree
space.

Definition 5.4. Given a starting point l0, the first (forward) principal component tree-
line, PC1, is

Lf1 = arg min
L∈L

∑
t∈T

d(t, PL(t)).

Notice that this principal component definition requires determining a starting point l0, while
its Euclidean space counterpart contains no such notion. The lines in Euclidean space can extend
in both directions indefinitely. Due to the structure of the tree space, lines can indefinitely extend
in only one direction (although we limit our attention to the line pieces contained in the support
tree for practical purposes). Therefore, they have to be limited on the other end.

Some appropriate starting point options were discussed previously in [28] and [4]. Some sug-
gestions are using the median tree, the root tree or the intersection tree as the starting point.
The starting point tree is included in every line, and any variation that may exist within this
tree cannot be detected by the tree-lines extending from it. The starting point should be selected
carefully based on this information. In this thesis, the root node is selected as the starting point
for both of the analyses.

The second principal component is the line which, when combined with the first principal
component, minimizes the sum of the distances of the data points to this combination. The kth

principal component can be deduced similarly. For the tree space, this notion is formalized as
follows:

Definition 5.5. Given a starting point l0, the k-th (forward) principal component tree-
line is defined recursively as

Lfk = arg min
L∈L

∑
t∈T

d(t, PLf1∪···∪L
f
k−1∪L

(t)).

The path of the k-th principal component tree-line is pfk.

As we will see in Example 5.9, the definition of the principal components allows multiple
solutions. A tie-breaking rule depending on the nature of the data should be established to reach
consistent results in the existence of ties. Such a rule can be established by determining a total
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ordering over the set of all tree-lines, or equivalently, the set of all paths. When a tie breaking rule
prefers path pL over pL′ , we denote this by pL > pL′ .

The following lemma describes a key property that will be used to interpret the projection of
a tree onto a subspace defined by a set of tree-lines. The reader may refer to the Appendix for the
proof.

Lemma 5.6. Let L1, L2, . . . , and Lq be tree-lines with a common starting point, and t be a tree.
Then

PL1∪···∪Lq(t) = PL1(t) ∪ · · · ∪ PLq(t).

Proof. For simplicity, we only prove the statement for q = 2. Assume that

L1 = {l1,0, l1,1, . . . , l1,k1}, L2 = {l2,0, l2,1, . . . , l2,k2}
with l0 = l1,0 = l2,0,

l1,i = l1,i−1 ∪ v1,i for 1 ≤ i ≤ k1, and

l2,j = l2,j−1 ∪ v2,j for 1 ≤ j ≤ k2.

Also assume

(9) PL1(t) = l1,r1

and

(10) PL2(t) = l2,r2 .

Let f(i, j) be the distance between the trees t and l1,i ∪ l2,j, for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2.
Using lemma 5.3, equation (9) means

v1,i ∈ t, if i ≤ r1, and

v1,j ∈ t, if j ≤ r2.

Hence,

f(i, j) ≤ f(i− 1, j), if i ≤ r1,(11)

f(i, j) ≥ f(i− 1, j), if i > r1.

By symmetry, we have

f(i, j) ≤ f(i, j − 1), if j ≤ r2,(12)

f(i, j) ≥ f(i, j − 1), if j > r2.

Overall, equations (11) and (12) imply that the function f attains its minimum at i = r1, j = r2,
which is what we had to prove. �

[4] provided a linear time algorithm to find the forward principal components in binary tree
space. We will give a generalization of that algorithm in tree space, and prove that the extended
version also gives the optimal PC’s.

The algorithm uses a notion of “weight” of nodes in the support tree. For nodes that are
covered by any of the already computed principal components or the starting point, the weight is
zero. For a node that did not appear in any of the already computed principal components, the
weight is the number of times it appears in the data set T . To formalize this idea, we first need an
indicator function. Let δ be an indicator function, defined as δ(v, t) = 1 if v ∈ t, and 0 otherwise.
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Then, given Lf1 , . . . , and Lfk−1, the first k−1 PC tree-lines, the k-th weight of a node v ∈ Supp(T )
is

wk(v) =

{
0, if v ∈ l0 ∪ pf1 ∪ · · · ∪ p

f
k−1,∑

t∈T δ(v, t), otherwise.

How will the weight wk(v) be useful in finding principal components? Remember that the kth

PC is the line which minimizes the sum of distances of the data points to the union of first k
PC’s. When selecting kth PC, we consider the lines which will decrease this sum of distances most.
In each candidate line, the nodes that already appear in l0 or a previously selected PC do not
contribute to this reduction. However, the nodes that have not yet appeared in l0 or first k − 1
PC’s reduce this sum by wk(v). (This follows from Lemma 5.3.) This reasoning leads us to the
following algorithm:

Algorithm 5.7. Forward algorithm. Let T be a data set and L be the set of all tree-lines with
the same starting point l0.
Input: The first (k − 1)-st PC tree-lines: Lf1 , . . . , and Lfk−1.
Output: A tree-line.
Examine the paths of the tree-lines in L. Return the tree-line whose path maximizes the sum of wk
weights in the support tree. Break ties according to an appropriate tie-breaking rule.

The next theorem formalizes that the tree-line returned by the forward algorithm is precisely
the k-th PC tree-line. The proof is in the Appendix.

Theorem 5.8. For a given starting point l0, let Lf1 , . . . , and Lfk−1 be the first (k − 1)-st PC

tree-lines. Then, the forward algorithm returns the kth PC tree-line, Lfk.

Proof. The definition of kth PC tree-line in terms of paths is equivalent to the equation

pfk = arg min
pL∈P

∑
t∈T

d
(
t, l0 ∪

((
∪i=1···k−1p

f
i ∪ pL

)
∩ t
))

= arg min
pL∈P

∑
t∈T

{ ∣∣∣t \ (l0 ∪ ((∪i=1···k−1p
f
i ∪ pL

)
∩ t
))∣∣∣

+
∣∣∣(l0 ∪ ((∪i=1···k−1p

f
i ∪ pL

)
∩ t
))
\ t
∣∣∣ }

= arg min
pL∈P

∑
t∈T

{ ∣∣∣t \ (l0 ∪ pf1 ∪ · · · ∪ pfk−1 ∪ pL
)∣∣∣

+
∣∣∣(l0 ∪ ((pf1 ∪ · · · ∪ pfk−1 ∪ pL

)
∩ t
))
\ t
∣∣∣ }
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= arg min
pL∈P

∑
t∈T

{ ∣∣∣t \ (l0 ∪ pf1 ∪ · · · ∪ pfk−1 ∪ pL
)∣∣∣+ |l0 \ t|

}
= arg min

pL∈P

∑
t∈T

∣∣∣t \ (l0 ∪ pf1 ∪ · · · ∪ pfk−1 ∪ pL
)∣∣∣

= arg min
pL∈P

∑
t∈T

{ ∣∣∣t \ (l0 ∪ pf1 ∪ · · · ∪ pfk−1

)∣∣∣
−
∣∣∣(t ∩ pL) \

(
l0 ∪ pf1 ∪ · · · ∪ p

f
k−1

)∣∣∣}
= arg min

pL∈P
−
∑
t∈T

∣∣∣(t ∩ pL) \
(
l0 ∪ pf1 ∪ · · · ∪ p

f
k−1

)∣∣∣
= arg max

pL∈P

∑
t∈T

∣∣∣(t ∩ pL) \
(
l0 ∪ pf1 ∪ · · · ∪ p

f
k−1

)∣∣∣
= arg max

pL∈P

∑
v∈pL

wk(v).

The last equation correspond to the path with maximum sum of wk weights in the support tree. �

To better explain how the algorithm works, we will apply the forward algorithm to the toy
data set given in Example 5.2.

Example 5.9. In this example, we select the tree-line with the leftmost path in the event of a
tie. We take the intersection tree as the starting point (illustrated in red below). The table given
below summarizes iterations of the algorithm, where each row corresponds to one iteration. At each
of the iterations, the name of the principal component obtained at that iteration is given in left
column. The support tree with updated weights (w′i(.)) is given in the middle column. The paths of
selected PC tree-lines according to these weights is given in right column.

PC 1

0
0

12

4
1

5
2

20

7
2

8
2

3 2

10

1

11

1

0
0

12

5
2

PC 2

0
0

10

4
1

5
0

20

7
2

8
2

3 2

10

1

11

1

0
0

3 2

10

1

PC 3

0
0

10

4
1

5
0

20

7
2

8
2

3 0

10

0

11

1

0
0

20

7
2
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PC 4

0
0

10

4
1

5
0

20

7
0

8
2

3 0

10

0

11

1

0
0

20

8
2

PC 5

0
0

10

4
1

5
0

20

7
0

8
0

3 0

10

0

11

1

0
0

10

4
1

PC 6

0
0

10

4
0

5
0

20

7
0

8
0

3 0

10

0

11

1

0
0

3 0

11

1

The forward algorithm finds the k-th PC tree-line in linear time. We finish this section with
the proof of this fact.

Theorem 5.10. For a data set with support tree of m nodes, the running time of computing
the k-th PC tree-line is O(m).

The sketch of the proof goes as follows. Forward algorithm adds the weights of the nodes in
the path of each tree-line on the support tree, and returns the tree-line with the maximum sum
of weights. To do this, the algorithm starts from the root node and moves down level by level,
going over each node once. At each node v, a total weight ŵ(v) is computed. The ŵ(v) is the sum
of weight wk(v) (as defined above) and the weight ŵ of the parent of v. The initial weight value
ŵ(r) of the nodes that belong to the starting point is zero. The algorithm returns the path whose
leaf-node has the maximum weight ŵ as the k-th principal component. Since the algorithm goes
over every node in support tree once, the running time is O(m).

4. Dimension Reduction in Tree Space

In this section, we will define backward principal component tree-lines. This structure is the
tree space equivalent of the backward principal component in the classical dimension reduction
setting. They represent the directions that carry the least information about the data set and thus
can be taken out. Our definition describes backward principal components as directions such that
when eliminated, the remaining subspace will have the minimum sum of squared distances to the
data points. These are considered to be the components with least influence.

As stated before, given a data set T , the number of distinct tree-lines that do not include each
other is n. These n tree-lines are able to express the support tree of T fully. In our setting, we
denote the tree-line with least influence as BPCn, the nth backward principal component tree-line.
The next backward PC with second least influence is BPC(n − 1), and so on. The indexing is
selected this way to ensure compatibility with the forward components.

Definition 5.11. Given a starting point l0, the nth backward principal component tree-
line, BPCn, is

Lbn = arg min
L∈L

∑
t∈T

d(t, P⋃
L′∈L\{L}(t)).
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The (n− k)th backward principal component tree-line is defined recursively as

Lbn−k = arg minL∈L\{Lbn,··· ,Lbn−k+1}∑
t∈T d(t, P⋃

L′∈L\{Lbn,··· ,Lbn−k+1,L}
(t)).(13)

The path associated to the (n− k)-th backward principal component tree-line will be denoted
by pbn−k.

Like in the forward approach, finding the backward PC’s require a way of measuring the effect
of each node on the objective function at each step. Consider the situation where we are searching
the (n − k)th BPC. At this point, k least influent components are already found and taken out,
and the remaining subspace consists of n − k components. To do this, we will need a modified
version of the weight concept. The nodes that are not part of the remaining subspace are at this
point irrelevant, so their backward weights are zero. Similarly, nodes of the starting point l0 have
weight zero. For nodes that are in the subspace (but not in the starting point), there are two
possibilities. If a node is covered by only one path, and this node appears in the data trees w
times, then selecting this path as BPCn−k will mean this node will reduce the sum of distances by
w. If this node is covered by multiple paths in the remaining subspace, then selecting any of those
paths as the BPCn−k will not result in removing this node from the remaining subspace, since it
is already covered by other paths as well. Therefore the sum of distances will not be reduced due
to this node, and it’s weight is zero.

Our methodology to find the backward components relies on finding the paths whose removal
from the current subspace will result in the least amount of increase in the sum of distances. At
each step, we go over all the candidate paths, and sum the backward weights of all of its nodes.
This sum is equal to the amount of increase in the sum of distances of the data points to the
remaining subspace as a result of selecting that path as the next backward component. We select
the path with the least sum of backward weights.

The formal definition of the backward weights and the backward algorithm is given as follows:

Definition 5.12. Given a starting point l0, let Lbn, . . . , and Lbn−k+1 be the last k BPC tree-lines
and B = P \ {pbn, . . . , pbn−k+1}. For v ∈ Supp(B), the (n− k)-th backward weight of the node v is

w′n−k(v) =


0 If v ∈ l0 or v belongs to at

least two different paths of B,∑
t∈T δ(v, t) Otherwise.

Algorithm 5.13. Backward Algorithm. Let T be a data set and L be the set of all tree-lines
with the same starting point l0.
Input: The last k BPC tree-lines: Lbn, . . . , and Lbn−k+1.
Output: The (n− k)th BPC tree-line: Lbn−k.
Let B = P \ {pbn, . . . , pbn−k+1}.
Examine the paths of the tree-lines in L. Return the tree-line Lbn−k whose path minimizes the sum
of w′k weights in the support tree Supp(B). If there is more than one candidate, select the BPC
according to an appropriate tie-breaking rule.

The key theoretical result of the section, the optimality of the backward algorithm, is summa-
rized as follows:

Theorem 5.14. For a starting point l0, let Lbn, . . . , and Lbn−k+1 be the last k BPC tree-lines.
Then, the backward algorithm returns the optimum (n− k)th BPC tree-line, Lbn−k.
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Proof. The definition of kth BPC tree-line (see Equation 13) in terms of paths is equivalent
to the equation

pbn−k = arg min
pL∈B

∑
t∈T

d
(
t, l0 ∪

((
∪p∈B\{pL}p

)
∩ t
))
,

where B = P \ {pbn, . . . , pbn−k+1}

= arg min
pL∈B

∑
t∈T

{ ∣∣t \ l0 ∪ ((∪p∈B\{pL}p) ∩ t)∣∣
+
∣∣l0 ∪ ((∪p∈B\{pL}p) ∩ t) \ t∣∣ }

= arg min
pL∈B

∑
t∈T

{ ∣∣t \ l0 ∪ ((∪p∈B\{pL}p) ∩ t)∣∣
+
∣∣(l0 \ t) ∪ (((∪p∈B\{pL}p) ∩ t) \ t)∣∣}

= arg min
pL∈B

∑
t∈T

{ ∣∣t \ l0 ∪ ((∪p∈B\{pL}p) ∩ t)∣∣+ |l0 \ t|
}

= arg min
pL∈B

∑
t∈T

∣∣t \ l0 ∪ ((∪p∈B\{pL}p) ∩ t)∣∣
= arg min

pL∈B

∑
t∈T

∣∣t \ l0 ∪ (∪p∈B\{pL}p)∣∣
= arg min

pL∈B

∑
t∈T

∣∣(t ∩ pL) \
(
l0 ∪

(
∪p∈B\{pL}p

))∣∣
+
∑
t∈T

∣∣(t ∩ (∪p∈P\Bp)) \ (l0 ∪ (∪p∈Bp))
∣∣

= arg min
pL∈B

∑
t∈T

∣∣(t ∩ pL) \
(
l0 ∪

(
∪p∈B\{pL}p

))∣∣
= arg min

pL∈B

∑
t∈T

∑
v∈(t∩pL)\(l0∪(∪p∈B\{pL}p))

1

= arg min
pL∈B

∑
v∈pL

w′k(v).

From the last equation the result follows. �

The proof of this theorem is in the Appendix.
Next, we provide an example illustrating the steps of the backward algorithm. We will apply

the backward algorithm to the toy data set given in Example 5.2 and use the same starting point.
Furthermore, we use the opposite tie-breaking rule we used in the forward algorithm, in this case
is to select the rightmost tree-line.

Example 5.15. The table given below summarizes iterations of the algorithm, where each
row corresponds to one iteration. At each of the iterations, the name of the backward principal
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component obtained at that iteration is given in left column. The pruned support tree with updated
weights (w′i(.)) is given in the middle column. The paths of selected PC tree-lines according to
these weights is given in right column.
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Like the forward algorithm, the backward algorithm also finds the optimal solution in linear
time:

Theorem 5.16. For a data set with support tree of m nodes, the running time of computing
the k-th BPC tree-line is O(m).

The proof of this theorem is very similar to that of Theorem 5.10, so it will be omitted to save
space.

5. Equivalence of PCA and BPCA in Tree Space

A very important aspect of tree space is that, the notion of orthogonality does not exist. In
the Euclidean space equivalent of backward PCA, the orthogonality property ensures that the
components do not depend on the method used to find them, i.e., the most informative principal
component is the same when forward or backward approaches are used. This powerful property of
path-independence brings various advantages to the analyst.
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In this section, we will prove that, under appropriate tie-breaking rules, the forward and back-
ward approaches are equivalent in the tree space as well when tree-lines are used. This is a
surprising result given the lack of any notion of orthogonality. In practice, this result will ensure
that the components of backward and forward approaches in binary tree space are comparable.

We will show this equivalence by proving that, for each 1 ≤ k ≤ n, the kth PC tree-line and
the kth BPC tree-line are equal. An equivalent statement is that their paths are equal: pfk = pbk.
Without loss of generality, we will assume that a consistent tie-breaking method is established for
both methods in choosing principal components whenever candidate tree-lines have the same sum
of weights.

All the proofs can be found in the Appendix.

Proposition 5.17. Given an integer 1 ≤ k ≤ n, let pf1 , ..., and pfk be the paths of the first k
principal components yielded by the forward algorithm and let pbn, ..., and pbk+1 be the paths of the
last n−k principal components yielded by the backward algorithm, then there exist no i and j such
that 1 ≤ i ≤ k < j ≤ n and pfi = pbj.

Proof. Suppose there exist i and j with 1 ≤ i ≤ k < j ≤ n and pfi = pbj. Without loss of
generality, suppose that j is the largest index where the assumption holds. Let pL denote the path
pfi = pbj, and let B = {pbn, ..., pbj+1}. Since 1 ≤ i ≤ k < j ≤ n, the set of paths P \ {B} contains
at least two paths. Let v ∈ pL be the first node from the leaf to the root that has at least two
children in Supp(P \ {B}). There are two possibilities:

I. v /∈ l0 i.e. there is at least one path different of pL in P \ {B} that has v as node or
II. v ∈ l0.

In both cases, w′j(u) = 0 for all u in the path pL from v to the root.
Consider case I. Let pL′ ∈ P \ {B} be a path different from pL that contains v in it. Let pv be

the path from the root to v. Since pL = pbj∑
u∈pL\pv

w′j(u) =
∑
u∈pL

w′j(u) ≤
∑
u∈pL′

w′j(u)(14)

=
∑

u∈pL′\pv

w′j(u).(15)

(16)

On the other hand, since pL = pfi

(17)
∑
u∈pL

wi(u) ≥
∑
u∈pL′

wi(u).

Next, we need to show that following holds:

(18)
∑

u∈pL′\pv

w′j(u) ≤
∑

u∈pL′\pv

wi(u).

To do this, suppose that: ∑
u∈pL′\pv

w′j(u) >
∑

u∈pL′\pv

wi(u).

It implies that there is at least one node v′ that has w′j(v
′) > 0 and wi(v

′) = 0. Since wi(v
′) = 0,

a path that contains v′ and is different of pL′ was yielded by the forward algorithm before pL′ .
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However, this implies that there are at least two paths that has v′ as node at step j in the backward
algorithm, then w′j(v

′) = 0. This gives a contradiction.
It is straightforward to see

(19)
∑

u∈pL\pv

wi(u) ≤
∑

u∈pL\pv

w′j(u).

Let us suppose that the inequality in (14) is strict, i.e.

(20)
∑

u∈pL\pv

w′j(u) <
∑

u∈pL′\pv

w′j(u).

We have ∑
u∈pL

wi(u) =
∑
u∈pv

wi(u) +
∑

u∈pL\pv

wi(u)

≤(19)

∑
u∈pv

wi(u) +
∑

u∈pL\pv

w′j(u)

<(20)

∑
u∈pv

wi(u) +
∑

u∈pL′\pv

w′j(u)

≤(18)

∑
u∈pv

wi(u) +
∑

u∈pL′\pv

wi(u)

=
∑
u∈pL′

wi(u)

which is a contradiction to equation (17). Therefore, equation (14) has to be an equality, i.e.

(21)
∑

u∈pL\pv

w′j(u) =
∑

u∈pL′\pv

w′j(u).

If one or both inequalities ∑
u∈pL′\pv

w′j(u) <
∑

u∈pL′\pv

wi(u)

and ∑
u∈pL\pv

wi(u) <
∑

u∈pL\pv

w′j(u),

holds, then the result follows in the same way as above.
Finally, let us suppose ∑

u∈pL′\pv

w′j(u) =
∑

u∈pL′\pv

wi(u)

and ∑
u∈pL\pv

wi(u) =
∑

u∈pL\pv

w′j(u),

which implies that ∑
u∈pL′

w′j(u) =
∑
u∈pL

w′j(u) and
∑
u∈pL′

wi(u) =
∑
u∈pL

wi(u).
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Now, since pfi = pL, we have pL > pL′ . And, since pbj = pL, we have pL < pL′ . Which is a
contradiction.

In the case II, where v ∈ l0, let v′ be the last node from the root to the leaf in pL that belongs
to l0. Take pL′ ∈ P \ {B} as a different path of pL, and v′′ as the last node from the root to the
leaf in pL′ that belongs to l0. Let pv′ be the unique path from the root to the node v′ and pv′′ the
unique path from the root to the node v′′. Since pv′ and pv′′ are contained in l0, we have∑

u∈pv′

wi(u) =
∑
u∈pv′′

wi(u) =
∑
u∈pv′

w′j(u)

=
∑
u∈pv′′

w′j(u) = 0.

Since pL = pbj

(22)
∑
u∈pL

w′j(u) ≤
∑
u∈pL′

w′j(u)

On the other hand, since pL = pfi

(23)
∑
u∈pL

wi(u) ≥
∑
u∈pL′

wi(u).

Similar to case I, we can see that 22 is an equality. This gives a contradiction. �

This proposition motivates the following theorem:

Theorem 5.18. For each 1 ≤ k ≤ n the kth PC tree-line obtained by the forward algorithm is
equal to the kth BPC tree-line obtained by the backward algorithm.

Proof. By the proposition 5.17, we have that at step n − 1 of the forward algorithm there
is no tree-line yielded by the forward algorithm equal to Lbn, then Lbn = Lfn. At the step n − 2,
there is no tree-line yielded by the forward algorithm equal to Lbn or Lbn−1. Since Lbn = Lfn, we have

the Lbn−1 = Lfn−1. We continue iteratively until step 1. At the end, we will have Lbk = Lfk for all
1 ≤ k ≤ n. �

This result guarantees the comparability of principal components obtained by either method,
enabling the analyst to use them interchangeably depending on which type of analysis is appro-
priate at the time.

Just like in PCA of Euclidean space, when two or more candidate directions exist for the next
principal component, a tie-breaking scheme should exist to resolve ambiguity. For the equivalence
of forward and backward PCA, the tie breaking rule for each method should mirror each other.
The tie situation is not very likely in Euclidean space, but because the tree space is discrete, it may
arise more often. In our numerical analyses, we see that support trees carry nodes that only exist
in one data tree. These tend to correspond to the principal components that the BPCA removes
first, or forward PCA selects last. The tie breaking rule is utilized to decide the order of pruning
these. We did not encounter tie situations for the more important components.
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6. Numerical Analysis

In this section we will analyze two different data sets with tree structure. The first data set
consists of branching structures of brain arteries belonging to 98 healthy subjects. An earlier
version of this data set was used in [4] to illustrate the forward tree-line PCA ideas. In that study
they have shown that a significant correlation exists between the branching structure of brain
arteries and the age of subjects. Later on, 30 more subjects are added to that data set, and the
set went through a data cleaning process described in [5]. In our study we will use this updated
data set.

The second data set describes the organizational structure of a large company. The details
of this data set are propriety information, therefore revealing details will be held back. We will
investigate the organizational structural differences between business units, and differences between
types of departments.

The Backward Algorithm used to conduct this analysis and produce visualizations is written
in MATLAB. The software is available by request.

6.1. Visualization. To visually present all the principal components on a support tree of a
data set, we present a visualization technique called Radial PC Drawing . The radial PC drawing
of one of the subpopulations of the artery data is given in Figure 19, and the radial drawings
of company data are given in Figure 24. (See [7] for details on relevant techniques for graph
visualization.)

In radial drawing of rooted trees, the root node is at the origin. The root is surrounded by
concentric circles centered at the origin. We plot our nodes on these circles, each circle is reserved
for the nodes in one level of the tree. The coordinate of each node on a circle is determined by
the number of descendants count. For example, for the nodes on the second level, the 360 degrees
available on the circle is distributed to the nodes with respect to the number of descendants they
have. Nodes with more descendants get more space. The nodes are put at the middle of the arc
on the circle corresponding to the degrees set for that node. The children of that node in the next
circle share these degrees according to their own number of descendants. This scheme allows the
allocation of most space on the graph to the largest sub-trees and the distribution of nodes on the
graph space as evenly as possible.

The principal components are expressed through the coloring scheme. A color scala starting
from dark red, going through shades of light red, orange and yellow is used. The components that
have higher sum of weights (

∑
w′(k)) are colored with the shades on the red side, and lower sum

of weights get the cooler shades. Since the backward principal components are ordered from low
sum of weights

∑
w′(k) to higher, this means the earlier BPC’s (lower impact components) are

shown in yellow, while the stronger components are in red tones of the scala. The color bar on the
right of the support tree shows which

∑
w′(k) corresponds to which shade.

6.2. Brain Artery Data Set.
6.2.1. Data Description. The data is extracted from Magnetic Resonance Angiography (MRA)

images of 98 heathy subjects of both sexes, ranging from 18 to 72. This data can be found at [14].
[6] applied a tube tracking algorithm to construct 3D images of brain arteries from MRA images.
See also [11] for further results on this set.

The artery system of the brain consists of 4 main systems, each feeding a different region of
the brain. In Figure 18 they are indicated by different colors: gold for the Back, cyan for the
Left, blue for the Right and red for the Front regions. The system feeding each of the regions are
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Figure 18. Left panel: Reconstructed set of trees of brain arteries. The colors indi-
cate regions of the brain: Back (gold), Right (blue), Front (red), Left (cyan). Right
panel: An example binary tree obtained from one of the regions. Only branching
information is retained.

represented as trees, reduced from the 3D visuals seen in Figure 18. The reason for this is to focus
on the branching structure only. Each node in a tree represents a vessel tube between two split
points in the 3D representation. The two tubes formed by this split become the children nodes
of the previous tube. The initial main artery that enters the brain, and feeds the region through
its splits, constitutes the root node in the tree. The tree provided in Figure 18 (right panel) is an
example tree extracted from a 3D image through this process.

The Back tree sets obtained after this process consist of 13634 nodes where the maximum
depth observed is 37 levels. Other subpopulations have similar sizes.

The correspondence issue for this data set is solved as follows. At each split, the child with
the higher number of nodes that descend from it is determined to be the left child, and the other
node becomes the right child. This scheme is called descendant correspondence.

The study of brain artery structure is important in understanding how various factors affect
this structure, and how they are related to certain diseases. The correlation between aging and
branching structure was shown in previous studies ([4], [11]). The brain vessel structure is known
to be affected by hypertension, atherosclerosis, retinal disease of prematurity, and with a variety of
hereditary diseases. Furthermore, results of studying this structure may lead to establishing ways
to help predict risk of vessel thrombosis and stroke. Another very important implication regards
malignant brain tumors. These tumors are known to change and distort the artery structure around
them, even at stages where they are too small to be detected by popular imaging techniques.
Statistical methods that might differentiate these changes from normal structure may help earlier
diagnoses. See [10] and the references therein for detailed medical studies focusing on these
subjects.

6.2.2. Analysis of Artery Data. The forward tree-line PCA ideas were previously applied
to an earlier version of this data set. Our first theoretical contribution of this thesis, extension of
tree-line PCA to rooted labeled trees, does not affect this particular data set since all trees in it
are binary. Therefore we focus on the dimension reduction approach. In [4], only first 10 principal
components were computed, and the age effect was presented through the first 4 components. In
general, the main philosophy of our dimension reduction or backward technique is to determine
how many dimensions need to be removed for enough noise to get cleared from the data set before
the statistical correlations become visible or significant. We ask this question for the brain artery
data set and the effect of aging on it, on the updated brain artery data set. Also, [4] had used the
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intersection trees as the starting point in calculating the principal components. In this numerical
study, we will use the root node as the starting point of the tree-lines.

Data Set Back subpopulation, All Components
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Figure 19. Radial PC drawings of the support tree of Back subpopulation. The
root node is at the center. The principal components are represented through colors:
Earlier BPC’s start from the cold yellow end of the color scala while the latter BPC’s
go towards the red end. Nodes that are in multiple components are colored with
respect to the highest total weighted component they are in. The color bar on the
right of each panel shows the coloring scheme according to the total weight of each
BPC.

The radial PC drawing of the Back subpopulation is given in Figure 19. Other subpopulations
present similar radial PC drawings, so they are omitted here.

An observation on this data set, or any data set consisting of large trees is the abundance of
leaves. Many of the leaves of the trees exist in one or few number of data trees. This leads to
support trees that are much larger than any of the original data trees. The underlying structures
are expected to be seen in upper levels, and most of the leaves can in fact be considered as noise.
In our setting, the leaves that only exist in one or few data trees make up the first backward
components. A question to ask is, what percentage of tree bodies is created by the low-weight
leaves, and what percentage is due to the high-weight nodes, or underlying shape? Figure 20
provides two plots that illustrate an answer.

In Figure 20, the number of backward components removed from the tree space data is in,
versus the total coverage explained by the remaining subspace is shown (left panel). The Y values
at the X = 0 point correspond to the total coverage before any components are removed. This
value is different for each subpopulation, as the sizes of their support trees are different. As
backward components are removed from each of the sub-spaces, the coverage decreases. We can
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Figure 20. Left panel: X axis represents the total number of backward principal
components removed from data. Y axis represents the number of nodes (coverage)
explained by the remaining subspace after removal. Four subpopulations are shown:
Back (blue), Left (red), Right (magenta), Front (green). Right panel: Same infor-
mation as the left panel is used. For each subpopulation, the total coverage and the
number of total backward principal components are scaled so that the maximum is
100.

observe that the initial backward components carry very little information, and therefore result
in a very small drop in the coverage of the remaining sub-space. This is caused by the very large
amount of leaves that aren’t part of any underlying structure. The Y = 0 points for each of the
curves mark the total number of principal components that cover the whole data. This number is
in fact equal to the number of leaves on the support trees of each of the subpopulations.

On the right panel, we see the same information, only the X and Y axes for each of the curves
are scaled so that the maximum corresponds to 100. The first observation we see in this graph is
that the curves are almost plotted on top of each other: even if the sizes of their support trees are
much different, the same percentage of coverage is explained by the same percentage of principal
components in each of these data sets. We can conclude from this that the underlying structures
are distributed similarly for each of these subpopulations. The second observation is that the
majority of the principal components explain very little number of nodes. In the right panel of
Figure 20, we see that for all the subpopulations, the first 80% of the principal components only
cover 10% of the nodes, and the last 10% of these components explain about 80%. This data
set is known to be very high-dimensional: over 800 components are needed to cover the Back
sub-population. However, Figure 20 shows that a very small ratio of them are actually necessary
to preserve the underlying structures.

Our next focus is to see, during the backward elimination process, at which points the age-
structure correlation is visible.

It was established previously that the branching of brain arteries are reduced with age. [10]
noted an observed trend on this phenomenon, while [4] showed this effect on Left subpopulation
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Figure 21. X axis represents the scaled number of backward principal components
removed from the subspace of each of the subpopulations. At each X value, the data
points are projected onto the remaining subspace. The sizes of these projections,
plotted against age, show a downward trend (not shown here). Statistical significance
of this downward trend is tested by calculating the standard linear regression p-
value (Y axis) for the null hypothesis of 0 slope. Y axis is scaled using natural
logarithm, while the Y axis ticks are given in original values. The grey horizontal
lines indicate 0.05 and 0.01 p-value levels. The subpopulations are colored as: Back
(blue), Left (red), Right (magenta), Front (green). A statistically significant age
effect is observed for subpopulations Back, Left and Right.

using principal components. In this thesis, for each subpopulation, we start from the whole sub-
space and reduce it gradually by removing backward principal components. At each step the data
trees are projected onto the remaining subspace. The relationship between the age of each data
point and the norm of the data tree projection is explored by fitting a linear regression line to
these two series. One example is provided in Figure 22. Others are omitted to save space, but
they exibit very similar patterns.

This line tends to show a downward slope, suggesting that the projection sizes are reduced by
age. To measure the statistical significance of the observation, a Student’s t-test was applied to
the data with the null hypothesis of 0 slope. Validity of t-test depends on several assumptions:
Normality of the residuals, homoscedasticity and linearity. Normality and homoscedasticity was
confirmed using appropriate tests (Kolmogorov-Smirnov and Breusch–Pagan tests). Linearly is
assumed based on visual inspections. Note that the t-test results for the slope are known to be
robust against deviations from linearity.
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Figure 22. For the female sub-population, the size of the data projections (Y axis)
onto the first PC. The X axis gives the age of each subject. The black solid line
represents the linear regression line fitted to these points. The slope of this line is
negative, implying the projection sizes may be reduced by age.

Figure 21 shows the plots of p-values at each step of removing BPC’s, for each subpopulation.
The p-values are scaled using natural logarithm while the Y axis ticks are left at their original
values. A rule-of-thumb for the p-value is that 0.01 or less is considered significant. We will use
this value to interpret our results. For a somewhat looser test, 0.05 can also be used. Figure 21
provides grey lines for both of these levels for reference.

In Figure 21 we see that, the Front subpopulation does not reach the p-value levels that are
considered significant at any sub-space. The Front region of the brain, unlike the other regions, does
not get fed by a direct artery entering the brain from below, but gets fed by vessels extending from
other regions. (See Figure 18). Therefore it is not surprising that the Front vessel subpopulation
does not carry a structural property presented by the other three subpopulations.

For other subpopulations, we identify two different kinds of age-structure dependence. First,
for Left and Back subpopulations, the age versus projection size relationship is very sharp until
the last 5% of the components are left. Most of the early BPC’s correspond to the small artery
splits that are abundant in younger population, which people tend to lose as age increases ([10]).
Therefore the overall branchyness of the artery trees are reduced. Figure 21 is consistent with this
previous observation. The p-value significance gets volatile at the last 5% of the components, where
the BPC’s corresponding to the small artery splits are removed, and only the largest components
remain in the subspace. These largest components correspond to the main arteries that branch the
most. The location-specific relationship between structure and age, noted in [4] can be observed
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Figure 23. The left and right panels are the p-value versus subspace plots for female
and male populations. The axes are as explained in Figure 21. The subpopulations
are colored as: Back (blue), Left (red), Right (magenta), Front (green). For males,
a statistically significant age effect is observed for subpopulations Back, Left and
Right. No such effect is observed for females.

for Left, Right and Back subpopulations towards the end of the X axis. This is the second kind
of dependence we observe in the data sets.

Our second focus is to repeat the question of age-structure relationship for the male and female
subpopulations. Our data set consists of 49 male, 47 female and 2 trans-gender subjects. We run
our analysis for the largest two groups to see how aging effects males and females separately. In
Figure 23, the p-value versus subspace graphs are given for the male and female subpopulations.
As before, the Front subpopulation does not show any statistical significance.

For the female group, the first kind of structural affect of age (overall branchyness) can be
observed for Back and Right. For the location-specific relationship (branchyness of the main
arteries), Back and Left subpopulations present significant p-values.

For the male group, the age versus overall branchyness is not significant at 0.01 p-value level,
although the Back, Right and Left subpopulations are very close. The location-specific relationship
can again be observed for these three subpopulations at significant levels.

The study on the full data set implies that two kinds of age-structure relationships can be
observed in the whole population using this method. Subsequent analysis of male and female
groups shows that the overall branchyness effect is observed more strongly in the male group.
These results suggest that the brain vessel anatomy of male and females may respond slightly
differently to aging.

6.3. Company Organization Data Set.
6.3.1. Data Description. In this analysis, we use a company organization data set of a large

US company. This data set is a snapshot of the employee list taken sometime during the last
ten years. It also includes the information on hierarchical structure and the organizations that
employees belong to. The set includes more than two hundred thousand employees active at the
time when the snapshot was taken. In this section we will explain the general aspects of the data
set that are relevant to our analysis, but we will hold back any specifics due to privacy reasons.
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The original company structure can be considered as one giant tree. Each employee is repre-
sented as a node. The CEO of the company is the root node. The child-parent relationships are
established through the reporting structure: the children of a node are the employees that directly
report to that person in the company. Since every employee directly reports to exactly one per-
son (except the CEO, the root node), this system naturally lends itself to a tree representation.
Moreover, this organization tree is not binary, but a general rooted tree. It has a maximum depth
of 13 levels.

In this study we will focus on populations of different departments across the company that
are assigned to a similar type of job. When the whole organization tree is considered, the directors
of these departments are at the fifth level of that tree. The upper levels of the main tree represent
organization divisions of the company based on main business activity, geographical locations
around the world, etc.

To form our data set, we gathered the list of all the directors in the company who are at
the fifth level. Then, based on the organization codes, we determined the main job focus of the
departments that the directors are leading. We selected four main groups of jobs to compare for
our study: finance, marketing, R&D, and sales. Other departments that focus on different jobs,
like legal affairs or IT support, are left out. For each category, each department assigned to that
category forms one data point. The director of that department is taken as the root node of the
data tree representing the department, and the people who work at that department are nodes of
this tree. The structure of the tree is determined by the reporting structure within the department.

The correspondence issue within the data sets requires some attention. A job-based corre-
spondence scheme between two data trees would involve determining which individuals in one
department perform a similar function to which individuals at the same reporting level in another
department. With the exception of the directors (who form the root nodes and naturally cor-
respond to each other), this kind of matching is virtually impossible for this data set. For this
reason, we employ the descendant correspondence for the data points.

The data set of the finance departments constructed in this fashion consists of 37 data trees,
with a maximum depth of 6 levels. The marketing set has 60 trees, maximum depth of 5, sales
has 41 trees, maximum depth 5, and R&D data set has 20 trees, maximum depth 6. The support
trees of these sets can be seen in Figure 24.

To visualize the company organization data, we will again employ radial PC drawing method.
The depth of these trees is not very large: 6 levels for the deepest data point. However, the node
population at each level is very dense.

6.3.2. Analysis of Company Organization Data. The comparative structural analysis of
these four organization data sets is conducted via the principal component tree-lines. We have
run the dimension reduction method for general rooted trees as described in Section 4, although
the forward method of Section 3 would have given the same set of components, as shown in
Section 4. The principal components obtained with this analysis are shown in Figure 24. The
first conclusions on the differences across types of departments come from the comparison of their
support tree structure. It can be clearly seen that the sales departments are larger than others
in population. Another clear distinction is in the flatness of each organization type. Typically,
a flat organization does not have many levels of hierarchy, and most of the workers do not have
subordinates. This is common in organizations of a technical focus. In Figure 24, we can see that
the R&D departments are visibly flatter than other three types: most of the nodes are at the
leaves and not at the interim levels. This is due to the fact that most of the employees in these
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departments do engineering-research type of work, for which a strongly hierarchical organizational
model is less efficient. The other three data sets, finance, marketing and sales have most of their
employees on interim levels, pointing to a strong hierarchy. This seems especially strong in sales
departments.
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Figure 24. Radial PC drawings of the support trees of four organization subsets:
Finance, Marketing, R&D and Sales. The root nodes are at the center. The prin-
cipal components are represented through colors: Earlier BPC’s start from the blue
end of the color scala while the latter BPC’s go towards the red end. Nodes that
are in multiple components are colored with respect to the highest total weighted
component they are in. The color bar on the right of each panel shows the coloring
scheme according to the total weight of each BPC.

In the next figure (Figure 25), the effect of reducing the principal components gradually on
the amount of nodes explained is shown. This figure is constructed in the same way as Figure 20,
right panel. Figure 25 shows that none of the organization data sets have a very concave coverage-
versus-components curve like the brain artery set did. Therefore for the organizational structure
setting, the earlier BPC’s have more potential to carry information compared to the artery setting.
Between the organization data sets, we see that the curves belonging to R&D and sales are very
close to each other (the less concave pair), while the curves of finance and marketing are shape-wise
close (the more concave pair). The concavity of these curves depend on what percentage of the
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Figure 25. The X axis is the number of backward principal components subtracted
from the subspace. The Y axis is the amount of nodes that can be explained by the
remaining subspace at each X level. Both of the axes scaled within themselves so
that the highest X and Y coordinates for all of the organization curves are 100. The
blue curve is for R&D, green is for marketing, black is for sales and red is for finance.

structure is explained by the early BPC’s, and what percentage by the later, stronger components.
A very concave curve means that most of the nodes of the data set can in fact be expressed through
a small number of principal components. This means that the structures within the data points
are not very diverse: the data trees of the set structurally look like each other, allowing a smaller
number of PC’s to explain more of the nodes. Vice versa, a less concave curve points to a data
set where a small portion of the principal components are not enough to explain many nodes due
to the diversity in the structures of the data points. Figure 25 shows that finance and marketing
departments are more uniformly structured than R&D and sales departments, i.e., two random
finance data trees are more likely to have a shorter distance to each other than two random R&D
data trees.

A coverage-versus-components curve is helpful in establishing the trend in the distribution of
variability within the data set: the earlier BPC’s express nodes that are not common across the
data points, and the later BPC’s cover the nodes that are common to most data points. The next,
and more in-depth question is: How are these more common and less common nodes distributed
among the data points themselves? To answer this question, we divide the set of all BPC’s into
two subsets. The first 90% of the BPC’s on the X axis of Figure 25 form the one set (SET
2). These BPC’s collectively represent the subspace where the less-common-nodes are in. The
remaining 10% of the BPC’s form the other set (SET 1). These BPC’s express the subspace where
the more common structures are in. For any data tree t, the projection of it onto SET 1 (PSET1(t))
represents the portion of the tree that is more common with other data trees in the data set. The
projection of t onto SET 2 (PSET2(t)) carries the nodes of it that are less common with others.
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Figure 26. The data points of each of the data sets: R&D (blue stars), marketing
(green squares), sales (black crosses) and finance (red circles). For each of the data
points, the length of its projection onto SET 2 is on the Y axis, and the length of
its projection onto SET 1 is given on the X axis. Each of these axes are scaled such
that the highest coordinate for each data set is 1 on each of the axes.

Since these two sets are complementary, the two projections of t would give t itself when combined:
PSET1(t)

⋃
PSET2(t) = t.

Figure 26 shows how the nodes in SET 1 and 2 are distributed among the data trees for each
of the organization data sets. For each data point, the length of its projection onto SET 2 is on
the Y axis, and the length of its projection onto SET 1 is given on the X axis. Each of these axes
are scaled such that the highest coordinate for each data set is 1 on each of the axes. Blue stars
denote the R&D data points, green squares are marketing data points, black crosses are sales data
points and red circles are finance data points. In Figure 26, it can be seen that none of the data
points are above the 45 degree line. This is an artifact of the descendant correspondence.

A very interesting aspect of Figure 26 is that, the data points of each data set visually separate
from each other. This is especially true for the marketing departments which follow a distinctly
more convex pattern compared to other kinds of departments.

For finance departments, we observe an almost linear trend, starting from around X = 0.3.
The bottom left data points are trees that are small in general: they contain little of the common
nodes set and almost none of the non-common set. As we go top-right, the trees grow in SET 1 and
SET 2 spaces proportionally. A similar pattern is there for sales departments, with the exception
of a group of data points lying on the X axis, pointing to a group of very small departments that
only consist of the main structure nodes. The R&D departments follow a lower angle pattern.
However, this might be due to the one outlier department at the coordinate (1, 1), pushing all
others to the left/bottom of the graph.
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The most significant pattern on this graph belongs to the marketing group. Unlike other depart-
ments, there is no linear alignment trend. The set seemingly consists of two kinds of departments:
First is the group with very little projection on SET 2, and varying sizes of projection on SET 1.
These are relatively small departments. The second is a group of departments that contain all the
nodes represented by SET 1 (therefore the ”common structure” part of the trees are common to
all of these trees), and varying, but large amounts of nodes represented in SET 2. These trees are
much larger than the first trees of the group. These two different modes of structure within this
group may be due to the particular kind of marketing activity, product family, etc they focus on.
The details of activities of each department is not part of our data set, therefore we are not able to
offer a reason for this separation. Note that two data sets that are shown to be structurally similar
in Figure 25, finance and marketing, are the furthest apart sets in Figure 26. This is because
Figure 25 focuses on the overall dispersion of coverage, while Figure 26 focuses on the relative
differences between the individual data trees.
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